AFRL-SN-WP-TR-2000-1046

SOFTWARE SCIENCES AND ENGINEERING
RESEARCH

J. MORRIS
M. SHAW

CARNEGIE MELLON UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

5000 FORBES AVENUE
PITTSBURGH, PA 15213-3891

MAY 2000

FINAL REPORT FOR 09/30/1993 - 12/31/1999

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND

WRIGHT-PATTERSON AIR FORCE BASE OH 45433—7318

JEC Quanrty

20000802 215

NOTICE

Using Government drawings, specifications, or other data included in
this document for any purpose other than Government procurement does
not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other
data does not license the holder or any other person or corporation; or

convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report is releasable to the National Technical Information Service

(NTIS). At NTIS, it will be available to the general public, including
Jforeign nations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

(J /Z JW x Af«m/ /Qﬂjz/ E %Z"‘//

Chahira M. Hopper Dale E Nelson, Chief
Target Recognition Branch Target Recognition Branch
Sensor ATR Technology Division Sensor ATR Technology Division
C (ot
_/
L Covert, Chief

Sensor ATR Technology Division
Sensor Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188
Public reporting burden for this collection of i ion is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of i { e garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information
Operations and Reposts, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washingten, DC 20503.
1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
MAY 2000 FINAL REPORT FOR 09/30/1993 - 12/31/1999
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
SOFTWARE SCIENCES AND ENGINEERING RESEARCH C F33615-93-1-1330
PE 61101
PR A724
6. AUTHOR(S} TA 01
J. MORRIS ——
M. SHAW
7. PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES) -| 8. PERFORMING ORGANIZATION
REPORT NUMBER

CARNEGIE MELLON UNIVERSITY
COMPUTER SCIENCE DEPARTMENT
5000 FORBES AVENUE
PITTSBURGH, PA 15213-3891

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSI(ES) 10. SPONSOETMTTRING
SENSORS DIRECTORATE . AGENCY REPORT NUMBER

AIR FORCE RESEARCH LABORATORY

AIR FORCE MATERIEL COMMAND AFRL-SN-WP-TR-2000-1046
WRIGHT-PATTERSON. AFB, OH 45433-7318

POC: CHAHIRA M. HOPPER, AFRL/SNWR, 937-255-5579 EXT. 4248
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT Maximum 200 words)
During the period 30 September 1993 to 31 December 1999, Carnegie Mellon University pursued a broad set of research

initiatives in response to DARPA's BAA 93-11. These projects constituted a wide-ranging research program that
significantly advanced the state of the art in software engineering science and technology. The projects addressed two
fundamental issues in software design and implementation, namely:

1. How to ensure that computing systems have the right functionality to meet user's needs.

2. How to make a computer system highly reliable and maintainable over its lifecycle.

All the contractual tasks attacked one or both of these questions in a different way. In 1997 under the additional task of

productizing research results, speech-understanding technology was applied to multilingual interaction (including translation)
and automatic meeting transcription. A comprehensive review of each effort, along with a bibliography that includes selected
publication abstracts comprise the report.

14. SUBJECT TERMS 15. NUMBER OF PAGES
software engineering, team-centered, composable, software architectures, machine learning, 206

speech recognition, specification, verification, spoken language, foreign language, interactive 16. PRICE CODE
communication, multimodal interaction.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT : ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

Standard Form 29 gRev. 2-89) {EG)
Prescribed by ANS] Std. 239.18
i Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

Table of Contents

Introduction 1
1. Team-centered System Development 1-1
1.1 User-centered design of group planning tools 1-1
1.1.1 Preliminary activities 1-1
1.1.2 Informal interviews 1-2
1.1.3 System goals 1-3

1.2 The prototype 1-3
1.3 Research questions 1-4
1.4 Prototype development and testing 1-4
1.5 Bibliography 1-5
2. Composable Software Systems 2-1
2.1 Scientific foundation 2-1
2.1.1 In search of standard software architecture problems 2-1
2.1.2 Software development education 2-2
2.1.3 Developing a formal basis for architectural style 22
2.1.4 Formal specification of AEC product models 22
2.1.5 Decomposing and recomposing transactional concepts 23
2.1.6 Semantics for parallel architectures 2-3
2.1.7 Coping with heterogeneity in software architecture 2-3
2.1.8 A software design paradigm based on process control 2-3
2.1.9 A software systems architectures course 2-3
2.1.10 Architectural mismatch 2-4
2.1.11 Using architectural style 2-4
2.1.12 Subtyping in object-oriented languages 2-4
2.1.13 Composing transactional concepts 24
2.1.14 Applying formal methods to distributed systems 2-5
2.1.15 Automated analysis of design 2-5
2.1.16 Specifying weak sets 2-5
2.1.17 Abstract models of memory management 2-6
2.1.18 Polymorphic closure conversion 2-6
2.1.19 An architecture for a family of instrumentation systems 2-6
2.1.20 View structuring 2-7
2.1.21 Architectural issues in software reuse 2-7
2.1.22 Teaching mathematics to software engineers 2-7

2.2 Architectural languages 2-7
2.2.1 A theory and description language for component interactions 2-8
2.2.2 A constraint-based, object-oriented, programming language 2-8
2.2.3 Patterns for software architectures 2-8
2.2.4 Formalizing architectural style 29
2.2.5 Re-design of UniCon 29

2.3 Legacy systems 2-9
2.3.1 Aspect: detecting bugs with abstract dependences 29
2.3.2 Viewpoint composition in model-based specifications 2-10
2.3.3 Reverse engineering 2-10
2.3.4 Advances in reverse engineering 2-10

2.4 Tools and environments 2-11
2.4.1 A taxonomy of architectures 2-11
2.4.2 Different notions of subtyping 2-11
2.4.3 New compositional mechanisms for systems 2-12
SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

iii

i TABLE OF CONTENTS

2.4.4 Formalizing architectural connections 2-12
2.4.5 Specifications in the Z language 2-12
2.4.6 Exploiting style in architectural design environments 2-12
2.4.7 Signature matching for software libraries 2-13

2.5 Software Architectures 2-13
2.5.1 Reuse at the software architecture level 2-13
2.5.2 Formalizing descriptions of software architecture 2-14
2.5.3 Architectural styles 2-15
2.5.4 An interchange language for software architecture 2-15
2.5.5 Software architecture primitives 2-16
2.5.6 Research conclusions and directions 2-16
2.5.7 Architecture classification/taxonomy 2-16
2.5.8 Architectural evolution : 2-17
2.5.9 Architecture description and analysis 2-17
2.5.10 Reasoning about software architecture 2-18
2.5.11 Architecture description languages 2-19
2.5.12 Development to support ADLs 2-19
2.5.13 Examples and case studies 2-20
2.5.14 Design support: architectural styles 2-21
2.5.15 The software architecture discipline 2-21

2.6 Formal methods 2-22
2.6.1 Structuring Z specifications with views 2-22
2.6.2 Formal specification of concurrent systems 2-22
2.6.3 Specification matching of software components 2-22
2.6.4 Protective interface specifications 2-23
2.6.5 Formal methods: state of the art and future directions 2-23
2.6.6 Hints to specifiers : 2-24
2.6.7 Specification matching of software components 2-24
2.6.8 Lightweight formal methods 2-24
2.6.9 Formal methods: state of the art and future directions 2-25
2.6.10 Protection from the underspecified 2-25

2.7 Tractable software analysis 2-25
2.7.1 Formalizing the uni-processor simplex architecture 2-26
2.7.2 Analysis and model checking case studies 2-26
2.7.3 Model checking software systems: A case study - 2-27
2.7.4 Theory checking 2-29
2.7.5 Program understanding 2-29
2.7.6 Analysis of software systems v 2-30
2.7.7 New analysis mechanisms 2-30
2.7.8 Software engineering 2-31

2.8 Other research 2-32
2.8.1 Safe and efficient persistent heaps 2-32
2.8.2 Language support for mobile agents 2-32

2.9 Bibliography 2-33
3. Integrated Software Architectures 3-1
3.1 Cognitively-Oriented Task Simulation 3-1
3.1.1 Pervasive capabilities for independent task systems 3-1
3.1.2 Speedup learning and large-scale systems 3-8
3.1.3 Soar support _ 3-10

3.2 High-Performance Planning and Learning 3-12
3.2.1 Plan repair mechanisms 3-14

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

iv

TABLE OF CONTENTS

3.2.2 Learning plan-optimization rules
3.2.3 Dissemination of Prodigy 4.0 architecture

144

3-14
3-14

3.2.4 Incremental learning of control knowledge for nonlinear problem solv- 3-15

ing
3.2.5 Learning control knowledge for plan quality
3.2.6 Learning domain knowledge by observation and practice
3.2.7 Planning in a dynamically-changing external world
3.2.8 Comparison of planning algorithms
3.2.9 Similarity metrics for case retrieval geometric domains
3.2.10 Theorem proving by analogy integrated with planning
3.2.11 Enabling efficient planning technology
3.2.12 Plan quality
3.2.13 Learning plan action models
3.2.14 Learning to reduce search
3.2.15 Analogical reasoning
3.2.16 Planning
3.2.17 Planning with external events
3.2.18 Real-world domains
3.2.19 Prodigy-UI
3.2.20 Learning methods
3.2.21 Planning algorithms
3.2.22 Planning, learning, and search algorithms
3.2.23 Probabilistic planning
3.2.24 Interleaving planning and execution
3.2.25 Collaborative, mixed-initiative and adversarial planning
3.3 Bibliography
4. Machine Learning in Large Scale Software Environments
4.1 Reliable indoor navigation
4.2 Theoretical results for reinforcement learning
4.3 Probabilistic navigation
4.4 Learning robot action effects
4.5 Learning road features for autonomous driving
4.6 EBNN learning
4.7 Improving techniques
4.7.1 Navigation
4.7.2 Learning visual features
4.7.3 Autonomously-discovered landmarks
4.7.4 Obstacle avoidance '
4.7.5 Robot control software
4.7.6 Testbed
4.8 Bibliography
5. Specification, Verification, and Program Development
5.1 Parallel computing
5.1.1 First full release of NESL
5.1.2 The current state of NESL
5.1.3 Parallel list ranking
5.1.4 Automatic parallelization of complex scan algorithms
5.1.5 Theoretical issues in parallel computing
5.1.6 MPI implementation of CVL and NESL
5.1.7 NESL implementation of the N-body problem

SOFTWARE SCIENCES AND ENGINEERING RESEARCH

v

3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-21
3-23
3-23
3-27
3-27
3-29
3-31
3-31

4-1
4-1
4-1
4-2
4-3
4-3
4-4

4-5
4-5
4-6
4-6

4-7
4-8
5-1

5-2
53
5-4
5-5

5-6
5-6

FINAL REPORT 1993-1999

v TABLE OF CONTENTS

S.1.8 NESL implementation of preconditioners 5-6
5.1.9 Parallel computing and program development 5-7
5.1.10 Management of network resources 5-8

5.2 Formal hardware verification and symbolic manipulation 59
5.2.1 Extending SMV to use dynamic variable ordering 5-9
5.2.2 Parameterized circuits 5-10
S.2.3 Formal verification of microprocessors 5-11
5.2.4 Image representation and analysis with binary decision diagrams 5-11
5.2.5 Inductive Boolean function manipulation 5-12
S.2.6 A model checker for a VHDL subset 5-12
5.2.7 Symbolic linear-time temporal logic model checking 5-13
5.2.8 Timing issues in circuit verification 5-15
5.2.9 Specification using timing diagrams 5-15
$.2.10 Language inclusion for w-automata: 5-16
5.2.11 Formal verification of sequential processors 5-17
5.2.12 Inductive Boolean function manipulation 5-18
S.2.13 Design rule checking with BDDs 5-18
5.2.14 Quantitative characteristics of real-time systems 5-19
5.2.15 Counter-examples and witnesses in symbolic model checking 5-21
5.2.16 Extraction of state machines from transistor-level circuits 5-22
5.2.17 Verification of arithmetic circuits 5-23
5.2.18 Verification of arithmetic circuits with binary moment diagrams 5-23
5.2.19 Parallel BDD manipulation 5-24
5.2.20 Reactive system verification 5-24

5.3 Formal verification of sequential processors 5-26
S5.3.1 Applications of symbolic trajectory evaluation 5-26
5.3.2 Symbolic representations of discrete functions 5-27
5.3.3 Automatic verification of sequential circuit designs 5-27
3.3.4 Extensions of symbolic trajectory evaluation 5-30
5.3.5 Hierarchical arithmetic circuit verification 5-30

5.4 Parallel programming with NESL 5-30
S.4.1 Implementing nested parallelism 5-31
5.4.2 Applications and algorithms 5-32

5.5 Automatic verification of sequential circuit designs 5-33
5.5.1 Automatic determination of time bounds for sequential circuits 5-33
5.5.2 Reasoning about parameterized circuit designs 5-33
5.5.3 Word-level model checking 5-34

5.6 Interfacing with Java 5-34
3.7 Mapping of NESL onto distributed memory multiprocessors 5-34
5.8 High performance message routing 5-34
5.8.1 All-to-All routing 5-34
5.8.2 Wormbhole routing 5-35

5.9 Bibliography 5-36
6. Intelligent Information Integration 6-1
6.1 System design 6-1
6.2 Significance of task assistants 6-2
6.3 Developing task assistants: the Pleiades system 6-2
6.4 Learning reading interests from experience 6-4
6.5 An experience-assisted web agent 6-4
6.6 Warren: A portfolio management system 6-4
FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

vi

TABLE OF CONTENTS

6.7 Bazaar: A formal negotiation model
6.8 A World Wide Knowledge Base
6.9 Other initiatives
6.9.1 Active data management
6.9.2 Matchmaker agents
6.9.3 Information services
6.9.4 Self-monitoring
6.9.5 Reusable agent architecture
6.9.6 Interest and opportunity matching
6.10 Bibliography
7. Spoken-language systems
7.1 Practical applications of speech recognition research
7.2 Accomplishments
7.3 Technology transition
7.4 Bibliography »
8. Sharing Viewpoints, Objects, and Animations
8.1 Developing predictive models based on representative tasks
8.2 Creating interactive programs
9. Foreign-language Learning
9.1 Approach
9.2 Accomplishments
9.3 Bibliography
10. Interactive Communication Technology
10.1 Facilitators for collaboration
10.2 Accomplishments
10.3 Bibliography
11. Multimodal Interaction Technology
11.1 Multimodal error-repair
11.2 A multimodal toolkit
11.3 A multimodal workstation
11.4 Communicator: A telephone-based dialog system
11.5 Bibliography
12. Rapidly Deployable Speech Translation
12.1 Towards bi-direction language translation
12.2 Applying DIPLOMAT: Building a translating telephone
12.3 Implementing the translating telephone
12.4 Accomplishments in language translation
12.5 Related accomplishments
12.6 Technology transition
12.7 Bibliography

SOFTWARE SCIENCES AND ENGINEERING RESEARCH

vii

10-1
10-1
10-2
10-3
11-1
11-1
11-1
11-2
11-2
114
12-1
12-1
12-2
12-2
12-2
12-3
124
12-5

FINAL REPORT 1993-199%

INTRODUCTION i 1

Introduction

During the period 30 September 1993 to 31 December 1999, Carnegie Mellon pursued a broad
set of research initiatives responding to DARPA’s Broad Agency Announcement 93-11. As
reported here, these projects together constitute a wide-ranging research program that sig-
nificantly advanced the state of the art in software engineering science and technology.

Our research addressed two fundamental problems of software design and implementation:

¢ How to ensure that computing systems have the right functionality to meet users’
needs, and

e How to make a computing system highly reliable and maintainable over its entire
lifetime.

Each of the six original projects attacked one or both of these questions in a different way. In
1997 we began additional projects under the same overall tasking structure. These new efforts
included several that applied speech-understanding technology to areas such as multilingual in-
teraction (including translation) and automatic meeting transcription. The following sections
provide an overview of the problem space for each of the twelve projects. A comprehensive
review of each effort, along with a bibliography that includes selected publication abstracts, fol-
lows in subsequent chapters.

1 Team-centered Systems Development

The design of applications is still a craft. We have passed through a burst of innovation in which
many of the more obvious tools — word-processors, spreadsheets, etc. — have been built.
Rather than waiting for spontaneous innovation to generate another *‘killer’’ application, we
sought to adopt some of the methodologies of industrial designers and social scientists to devel-
op products based upon thorough understanding of users’ needs and capabilities. This project
defined the practice of team-centered system development as it applies to a variety of group
activities: managing time and information, collaborative writing, and crisis management.

2 Composable Software Systems

Our society has become increasingly depending upon extremely large and complex software sys-
tems. As the size of systems has grown over the past 30 to 40 years, software development
techniques have advanced enormously, from using primitive machine languages in a bare en-
vironment to employing sophisticated programming languages with compilers and module-
interconnection tools. We sought to take the next great leap by shifting focus from programming
at the module level to software development at the systems level. We felt it possible to address
the engineering and rationalization of many areas of our existing software infrastructure to guide
the creation of new megasystems. This project provided (1) a scientific foundation for design-
ing, building, and analyzing large, heterogeneous software systems, (2) architectural languages
for describing compositions of software, (3) strategies for dealing with legacy systems, and (4)
tools and environments to support our methods and languages.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2 INTRODUCTION

3 Integrated Software Architectures: Learning, Planning, and Task
Simulation

Artificial Intelligence research has been a rich generator of practical applications and products
over the years by pushing the envelope of what is possible to program into a computer. Our work
on learning and planning had demonstrated enough promise on small examples that sought to
create some large systems to work on real domains of interest: mission planning, transportation
planning, robotic control, and task simulation.

4 Machine Learning in Large-Scale Software Environments

One key type of knowledge for robotic applications is that of the effects of robot actions. Robot
planning approaches that search through the space of possible robot actions rely crucially on
such knowledge of action preconditions and effects. However, most experimental work in
robotics encounters difficulties in modelling the true preconditions and effects of actions. We
have begun exploring the feasibility of learning such action models from experience.

Our research in Machine Learning sought to develop and disseminate a broadly applicable
library of machine learning methods and to explore their application to problems in robotics.

5 Specification, Verification, and Program Development for High
Performance Computer Architectures

In recent years the parallel processing community has made major steps in simplifying the use of
a variety of high-performance parallel and vector computers by supplying languages that port
among these machines. Such languages include High Performance Fortran, C*, NESL, and UC.
These languages were approaching the point where it is possible to write code once and then run
it on a variety of different parallel processors with good runtime efficiency. The languages by
themselves, however, do not go far enough to make the machines accessible to nonexperts. To
significantly increase the utility of high-performance parallel processors, the community needs
to: (1) supply a simple and uniform interface for accessing parallel machines and (2) reduce the
time required by users to prototype new parallel algorithms. To address these issues, we are
working on an environment and associated language that:

* Allows users to access transparently remote parallel processors as servers,
* Supplies a common debugging environment across diverse machines,

* Allows users to interactively run interactively on parallel machines from their local
machine and get immediate results,

¢ Makes it easy to extend and modify existing libraries,
* Supplies common tools for analyzing running times and optimizing code.

6 Intelligent Information Integration Through Learning and Negotiation

Information is increasingly available from disparate and heterogeneous information sources.
The objective of this research is to develop a network of software agents that provide infor-
mation access and fusion from heterogeneous information sources and to experiment with these
agents within a fielded system for supporting a collection of office work tasks. Qur thesis is that
methods for learning and negotiation will dramatically improve the effectiveness, robustness,
scalability, and maintainability of such systems.

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

INTRODUCTION 3

7 Spoken-language Systems

We sought to create technology for real-time unlimited vocabulary spoken language processing
in the context of practical applications. Our goals included enhancement of the accuracy, robust-
ness, portability, scalability and utility of spoken language systems, through the development of
strategies to automatically acquire knowledge at all levels of the process and through unification
of structures to represent this knowledge.

8 Sharing Viewpoints, Objects, and Animations

The current state of the art for creating end user applications is to build for a specific delivery
mechanism. This is expensive and high risk. Our approach, based on a fundamental understand-
ing of the human perceptual system, is to determine generic, representative tasks (such as object
search, object selection, viewpoint manipulation, locomotion) and develop a predictive model.
This predictive model will allow us to determine for a given end user application whether or not
that application has attributes that merit the expense and difficulty of using a more exotic display
mechanism. :

9 Foreign-language Learning

We applied automated speech recognition to the acquisition and sustainment of foreign language
speaking skills, which are increasingly important in an era of military and civilian multinational
endeavors. Language skills are among the most expensive taught in the military, and atrophy
quickly when not used. Human language tutors are costly and may be unavailable. Previous
language learning software either has not listened to the student, or has been limited in the feed-
back it provided, typically rejecting spoken utterances without being able to explain what was
wrong with them. Our work sought to overcome these limitations.

10 Task-Oriented Communication Technology

We sought to create task-oriented technologies for collaboration among individuals, workgroups,
and information services. Such collaborations will be mediated by computers to enhance access
to relevant information or to overcome barriers of time, space, or culture. The key to such col-
laborations is communication in the context of information relevant to the task at hand. This
means that collaboration must occur in the context of information tailored to the task at hand.
Collaboration must also be able to cross language barriers, and all interactive software must sup-
port collaboration with relevant parties. Collaboration must not be confined to specialized
software ghettos and must make effective use of all human communication modalities that can
be applied to the task at hand (e.g., speech, gesture, handwriting, face-, eye-, pose-, body-
motion). Finally, collaboration technologies must adapt to the tasks and the people involved,
rather than the other way around.

11 Multimodal Interaction Technology

Our research in this area concerned cross-modal repair of errors in automatically recognized
speech. Previous research in speech-recognition systems had not sufficiently addressed the
problem of recognition errors. Despite a few successful commercializations, e.g. dictation sys-
tems for computer users with repetitive-strain injuries, informal user surveys suggested that

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

4 INTRODUCTION

speech-recognition repair methods of the time were insufficient. These methods include repeat-
ing speech-input (‘‘respeaking’’), choosing from interpretation alternatives, and using the
keyboard. We sought to provide much more efficient repair mechanisms for automatic speech
recognition.

12 Rapidly Deployable Speech Translation

DIPLOMAT is a pilot project in rapid-deployment, unrestricted speech-to-speech translation. We
sought to make this system retargetable to both new languages and new domains orders of mag-
nitude more quickly than commercial technology.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

TEAM-CENTERED SYSTEM DEVELOPMENT -1

1. Team-centered System Development

1.1 User-centered design of group planning tools

Calendar and time management systems are key artifacts to study in the area of group work and
coordination. They encapsulate the state-of-practice for any community that uses them.

There are many well-proven, industrial-strength computational tools for planning: PERT charts,
Gant Charts, PERT-COST systems, Heuristic Planning systems, etc. There have also been many
attempts to solve the group scheduling and coordination problem through the use of computers.
They often fail for completely understandable reasons that have nothing to do with their excel-
lently rational designs. Most people jealously protect the scheduling of their time and the control
of their activities. Unless they are strongly motivated to serve a central authority, they exercise a
great deal of personal discretion about what tasks they undertake and when.

The weakest link in the group coordination activity is the interaction of an individual with the
group. It is computationally easy to plan, schedule, and track a set of tasks associated with a
single, well-defined project. However, it is very hard to get the attention and commitment of all
the individual actors in that project so that their contributions are timely and relevant. The typical
individual in a modern organization might simultaneously be involved with several projects each
with a different cast of characters and having different goals. They must make daily decisions of
what to attend to and what level of effort to expend.

The spirit of user-centered design suggests that if one is designing a group calendar-coordination
system that she start not with the central scheduler algorithm, but with the individual user and
her perception of the "system". An individual’s entry to a group coordination system should be a
personal calendar system; for most people that is the most natural and familiar planning tool.

This indirect approach has another crucial benefit: there is a motivation for individual adoption
of the tool long before any group commitment is required. If a manager looks around some
month and discovers that half her organization is using. e.g. the Franklin Planner, she has already
solved the "adoption” problem and can proceed to build on the common vocabulary and practices
of that system.

1.1.1 Preliminary activities

We began this research with a knowledge-gathering and planning effort: a literature search, in-
formal interviews of putative users, speculation, and brainstorming. Some ideas from the litera-
ture that have influenced our design include:

¢ The artifacts and details of time management are less important to an individual or
group than clarity of goals and recognition of constraints. No time management sys-
tem can succeed unless its manager has a deep understanding of purpose.

* Many people, organizations, and societies, are not calendar or task driven but give
primacy to human relationships and transactions. Salesmen, lawmakers chief-
executives, and other powerfully productive people treat calendars as the small tail
of a big dog. <

¢ Some of the characteristics of recognized star performers are: taking initiative, and

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999 .

1-2 TEAM-CENTERED SYSTEM DEVELOPMENT

regulating one’s own work commitments, time, performance level, and career
growth. In other words, they control their own activities and calendars.

e Performance can be divided into effort, results, and impact. Prospective or
retrospective calendars measure only the first of these.

e Paper calendars are preferred to many computer systems because they allow a user
to see lots of context when they are scheduling an event and allow at-a-glance
browsing.

e To-Do lists, both long-term master lists, and short-term working lists are written in
various places on or around calendars.

* Goals and tasks have different kinds of temporal constraints ,some are tightly
scheduled, some loosely. Some intentions are temporally constrained by other inten-
tions. There is a tendency for the timely to drive out the important.

We have examined a few computer calendar systems:

* The most popular tools, e.g. Now-Up-To-Date, are good simulations of the paper
systems with some computer benefits thrown in.

¢ Rigorously and rigidly organized systems, e.g. Ascend, are less popular even with
people who consciously use a highly structured planning system, e.g. Franklin Plan-
ner. A common statement by users of the more normative systems was, "It’s great,
but I only use about half of it."

1.1.2 Informal interviews

We interviewed several people at length regarding their time-management behavior. From these
interviews, we gathered the following insights:

e Even the best computer calendar systems don’t permit as much flexibility as some
users might want. Some of the problems users mentioned were that the system does
not permit dragging between weeks, and that a manager might want to be able to
track the frequency of his contacts with key individuals or work groups.

¢ A "why" exercise—asking repeatedly of a week’s activities, "Why, did/would you
do this?"— revealed about 17 different one-word reasons for a typical professional.
A surprise, obvious in retrospect, was that many things are done to maintain or en-
hance an important personal relationship.

e People may schedule time more on the basis of how tasks break up into chunks than
by explicit schedules or deadlines. For example, if I see that I only have 30 minutes
before my next meeting, I will select some task which I know I can achieve suf-
ficient closure in within 30 minutes or less.

e We need support for the link between small tasks and long-term tasks. For example,
writing an NSF proposal is a fairly important task, but it involves so much work
over such a long period of time, that simply putting a "Write NSF proposal” item in
a to-do list or on a calendar does offer much help in scheduling the time to do it. We
may want our system to have a priori knowledge of the decomposition of some
high-level tasks (including information about temporal dependence) so that we can
provide the users with a set of low-level tasks which can then be scheduled.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

TEAM-CENTERED SYSTEM DEVELOPMENT 13

1.1.3 System goals

It is unclear exactly what the measurable goals of a time management system are. At the
ridiculously narrow end the goal might be that a person never miss a meeting or decide in the
shortest time which task on her to-do list to undertake. At the ridiculously vague end the goal
might be whether the person is being effective in their job or fulfilled in her life. We know the
phenomena we’re looking for: The individual or group doesn’t necessarily produce more, but
they are quicker to make or refuse commitments, more likely to complete committed tasks in a
timely manner, more likely to undertake preparations for upcoming events, and better able to
explain why a particular task is being performed at a particular time.

A possible test group for this system is college students. They have many explicitly scheduled
obligations and bespoke goals. The artificiality of their situation actually makes analyzing their
behavior easier.

From a detailed study of the weekly recorded activities of a university professor we found that
many activities have an unclear pay-off but are nonetheless valuable. Often the rationale is some-
thing like, "Maybe X will buy my idea if I meet him at the Y meeting." One of the main com-
plications of scheduling is estimating the positive and negative outcomes of various activities. "If
I spend an hour in the library I might find the answer to question X." "If I skip this lecture I
might miss the answers to the quiz." In fact, tasks with known outcomes are easy to handle but
often uninteresting. There may be value in a user prospectively and retrospectively rating the
importance of tasks. Another frequent explanation for tasks was that they were "owed" to some-
one else. A distinct transactional aspect to the person’s activities emerged. "I go to this meeting
because X needs me there and X has helped me with the Y problem.” Thus the "why’s" of
various tasks are often not based on cause/effect relationships between goals and sub-goals but
on a kind of vague commerce in human obligations which may or may not lead to tangible
benefits or penalties.

We created many pictures of tasks and schedules. The idea was to explore a wide range of
metaphors for describing the set of activities and goals facing an individual. A general obser-
vation we made what that a person will react more immediately to a size or shape of a task than a
written description or numerical value. When an unimportant task happened to take up a lot of
space in a picture, the person would react strongly.

1.2 The prototype

We created a initial prototype calendar system from a set of preliminary design ideas. Its major
purpose was to elicit some reactions from potential users. The main ideas included:

¢ Making Goals Salient To-do lists typically are a mixture of potential activities, like
"walk the dog" or "move the division", and goals like "find baby-sitter” or "take the
hill". A goal is different from an activity because the amount of time or resource to
achieve it is unknown.

The prototype provided a panel for explicitly displaying goals and showing the rela-
tion among them. Achieved goals can be checked off.

¢ Mixed initiative planning The mock-up looks like a paper calendar system except
that items are pasted, like post-it notes, onto the display rather than written. There
are very few constraints on where one pastes a task or appointment, or on what it

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

1-4 . TEAM-CENTERED SYSTEM DEVELOPMENT

looks like. There are (breakable) constraints on the beginning and ending times of
tasks, and computing power is used mainly to analyze effort levels, point out con-
flicts, and suggest schedules. In other words, the user always has the power to over-
ride any computer-made plans and can easily adjust any constraints or parameters.

¢ Meaningful graphics The graphics should "work" in Tufte’s sense rather than be
merely decorative. The size, shape, color and placement of graphic elements have
meanings for the scheduling process. For example, height represents task duration.
This has two purposes: to minimize the typing a person must do to record and adjust
their plans and to make "at-a-glance" analysis of a plan easier.

¢ Zooming and depth Relating the "big picture” to the daily detail is an crucial aspect
of planning. The mock-up allows one to view the schedule from a variety of virtual
distances as an alternative to the day-week-month viewing alternatives used by most
systems. The placement of data in three-dimensional space might be tried.

® Deeper structure Any real calendar or schedule is the outcome of a deeper process
involving goals and constraints. An attempt should be made to make these less overt
decisions explicit in the tool and relate them to actual activities. Many calendar sys-
tems make an attempt at this feature but none has succeeded. Some have no "point-
of-view" and others are too rigid.

1.3 Research questions

This project is aimed at creating an artifact: a time and goal management calendar system.
However, it is also aimed at getting some general answers to some fundamental questions of
human computer interaction:

* How to make input capture easy enough
® What are the important features of tasks
® What is user-centered design.

1.4 Prototype development and testing
We created a subsequent prototype calendar system (on a Mac) that embodied a number of new
features:

* The system categorized items according to their corresponding goal or job.

® Their shape/color of an item was determined by its category.

® The user could move planned items (horizontally) within a time period to reflect the
likelihood that they would actually be performed. Past items not performed stayed
on the calendar for future analysis.

* For any period, the user could compute a tally of activities, providing a pie chart
suggesting the user’s effort allocation during that period.

We simulated several graphical displays comparing various aspects of tasks, e.g. urgency vs.
importance. Several users, most previously familiar with Now-Up-To-Date, informally tested
the prototype. These users reported that its features helped them understand and better utilize the
calendar-planning process

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

TEAM-CENTERED SYSTEM DEVELOPMENT 15

1.5 Bibliography

[Kamas and Reder 94]
Kamas, E., and L.M. Reder.
The role of familiarity in cognitive processing.
Sources of coherence in text comprehension: A festschrift in honor of Jerome L. Myers.
In O’Brien, E. and R. Lorch,
L. Erlbaum, 1994.

[Kosbie and Myers 94]
Kosbie, D.S., and B.A. Myers.
Extending programming by demonstration with hierarchical event histories.
Technical Report CMU-CS-94-156, Computer Science Department, Carnegie Mellon Univer-
sity,
May, 1994.
Also appears as Human Computer Interation Institute Technical Report CMU-HCII-94-102.

[Landay and Myers 94]
Landay, J.A., and B.A. Myers.
Interactive sketching for the early stages of user interface design.
Technical Report CMU-CS-94-176, Computer Science Department, Carnegie Mellon Univer-
sity,
July, 1994.
Also appears as Human Computer Interation Institute Technical Report CMU-HCII-94-104.

[Lebiere et al. 94]
Lebiere, C., J.R. Anderson, and L.M. Reder.
Error modeling in the ACT-R production system.
In Proceedings of the Cognitive Science Society. CSS, 1994.
To appear. ‘

[Miner and Reder 94]
Miner, A., and L.M. Reder.
A new look at the feeling of knowing: Its metacognitive role in regulating question answer-
ing. -
Metacognition: Knowing about knowing.
In Metcalfe, J., and A. Shimamura,
MIT Press, 1994.

[Myers 94a]
Mpyers, B.A.
User interface software tools.
ACM Transactions on Computer-Human Interaction, 1994.
To appear.

[Myers 94b]
Myers, B.A.
Challenges of HCI design and implementation.
ACM Interactions1(1):73-83, January, 1994.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

1-6 TEAM-CENTERED SYSTEM DEVELOPMENT

[Myers 94c]
Myers, B.A.
The Garnet user interface development environment: Demonstration abstract.
In CHI'94 Conference Companion, pages 25-26. CHI, April, 1994.

[Myers and Olsen 94)
Myers, B.A., and D.R. Olsen, Jr.
User interface tools: Tutorial description.
In CHI'94 Conference Companion, pages 421-422. CHI, April, 1994.

[Myers et al. 94a]
Myers, B.A., D. Giuse, A. Mickish, B. Vander Zanden, D. Kosbie, R. McDaniel, J. Landay,
M. Goldberg, and R. Pathasarathy.
The Garnet user interface development environment: Video abstract.
In CHI'94 Conference Companion, pages 455-456. CHI, April, 1994.

[Myers et al. 94b]
Mpyers, B.A., D.A. Giuse, A. Mickish, and D.S. Kosbie.
Making structured graphics and constraints practical for large-scale applications.
Technical Report CMU-CS-94-109, Computer Science Department, Carnegie Mellon Univer-
sity,
May, 1994.
Also appears as Human Computer Interation Institute Technical Report CMU-HCII-94-100.

[Reder and Gordon 94]
Reder, L.M., and J.S. Gordon.
Subliminal perception: Nothing special cognitively speaking.
Cognitive and Neuropsychological Approaches to the Study of Consciousness.
In Cohen, J., and J. Schooler,
L. Erlbaum, 1994.
In press.

[Reder and Klatzky 94]
Reder, L.M., and R. Klatzky.
Transfer: Training for Performance.
Learning, Remembering, Believing: Enhancing team and individual performance.
In Druckman, D., and R.A. Bjork,
National Academy Press, 1994.
In press.

[Schooler et al. 94]
Schooler, J.S., R. Ryan, and L.M. Reder.
The cost and benefits of verbally rehearsing memory for faces.
Basic and Applied Memory Research, Vol. 1I.
In Herrmann, D.J., M.K. Johnson, C. Hertzog, C. McEvoy, and P. Hertel,
L. Erlbaum, 1994.

In press.

[Vander Zanden et al. 94)
Vander Zanden, B., B.A. Myers, D. Giuse, and P. Szekely.
Integrating pointer variables into one-way constraint models.
ACM Transactions on Computer-Human Interaction1(2), June, 1994.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-1

2. Composable Software Systems

Software techniques have developed enormously over the past 30-40 years, from primitive
machine languages to sophisticated programming languages and tools for system configuration.
We have worked on the next great leap, shifting focus from module-level programming to
system-level programming. In the former activity we had built programs in terms of procedures
and abstract data types using simple module interconnection as a way to compose modules. In
the latter, we build systems in terms of more sophisticated components, usually entire systems
themselves, and connect them with more sophisticated abstractions for composition.

What makes the construction of composable systems different from programming?

e We are liberating ourselves from thinking of the task as merely programming. We
are not just building a program, we are building a system.

e Our units of manipulation are components and connectors, rather than simply lines
of source code. Our innovative claim is that connectors are first-class entities — just
as components are — in a system.

e We want to provide ways to talk precisely about common patterns of structures.
This allows us to exploit special properties of particular composition idioms for
analysis, design guidance, and efficient implementation.

The research program at Carnegie Mellon in Composable Software Systems has had two primary
goals:

1. To provide a scientific and engineering basis for designing, building, and analyzing
composable systems;

2. To provide languages, tools, environments, and techniques to support (1).

Three themes cut across our individual research projects and interests: software architectures
(Garlan, Shaw), formal methods (Garlan, Jackson, Wing), and tractable software analysis (Jack-
son). The report of our progress is organized around these three themes.

This report covers work performed from the beginning of the contract period through June 1997.
Work on these and related issues then continued under a separately-funded project, "A Tech-
nology Investigation Supporting Software Architecture and Analysis for Evolution.”

2.1 Scientific foundation

To establish a scientific foundation—in the form of semantics, descriptions, and analyses—for
building composable systems, we must understand the limitations of current models, theories,
and methods of software construction while developing new, more appropriate ones. Using ex-
amples from practical systems in our research, our major goal is to develop methods and tech-
niques for classifying, specifying, analyzing, and designing software systems.

2.1.1 In search of standard software architecture problems

Many disciplines use standard problems to focus discussion. If the problem is well-understood,
discussion can proceed to solution techniques rather than hanging up on problem details. In an
effort to foster progress in the software architecture community, we are developing a collection
of good, shared problems. We circulated the first version at the International Workshop on

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-2 COMPOSABLE SOFTWARE SYSTEMS

Software Specification and Design. We converted our earlier, paper document to a web version
in [Shaw et al. 95a]. Since our goal is developing community consensus rather than final publi-
cation, we expected this to pass through many versions circulated within the community

Model problems and research directions in software architecture

The software architecture community would benefit from sharing a set of standard example

problems. This set of problems, such as the collection we’ve been assembling, would improve
our ability to work out ideas, exhibit techniques, and compare results. We intend to stimulate a

discussion about suitable problems: What characteristics should they have, what specific

problems would serve us well? We converted our earlier, paper document to a web version in
[Shaw et al. 95a]. We expect smoother updates and wider distribution this way.

[Garlan 95a] outlines the challenging research problems in Software Architecture.

2.1.2 Software development education

Part of the transition plan for this grant involved education. We made progress disseminating
our material on how to teach software architecture principles by producing a report describing
software development exercises for a software architecture course. [Garlan and Shaw

94a] presents a set of exercises developed for a course taught at Carnegie Mellon.

We have developed and offered a course (and associated course materials) in software develop-
ment. The software development exercises we developed for this course give students hands-on
experience with distinctly different architectures. We presented these assignments at the
software engineering education workshop at ICSE-16 in May [Garlan and Shaw 94b].

2.1.3 Developing a formal basis for architectural style

Developers describe the software architecture of most systems informally and diagrammatically.
For these descriptions to be meaningful at all, one must understand figures by interpreting the
boxes and lines in specific, conventionalized ways. In [Abowd et al. 93] we treat these conven-
tionalized interpretations as architectural *‘styles’” and provide a formal framework for their
uniform definition.

2.1.4 Formal specification of AEC product models

[Chadha et al. 94] illustrates the use of equational specifications in developing product data
models. This approach enables a precise and abstract description of products, where both syn-
tactic and semantic checks are used for validation. Because they are formal objects, these
specifications can be validated with respect to formal requirements and combined using ordinary
mathematics. In addition, the availability of mature tools from the software engineering com-
munity further supports this approach to specifying and validating product models. To the best
of our knowledge, this is the first application of formal methods in civil engineering.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-3

2.1.5 Decomposing and recomposing transactional concepts

In the Venari Project we teased apart the usual atomicity, serializability, and persistence proper-
ties rolled into transactions, and added the ability for transactions to be multi-threaded. In par-
ticular, we provide support for the following features, each as a separable component: persis-
tence, undoability, reader/writer locks, threads, and skeins. We want the individual pieces to
compose in a seamless way to give us transactions. Persistence ensures permanence of effects of
top-level transactions. Undoability allows us to handle aborted transactions. Reader/writer locks
provide isolation of changes to the store, and hence ensure transaction serializability of concur-
rent transactions. Skeins let us group a collection of threads together, giving us the ability to
make multi-threaded transactions. [Wing 94] focuses on the details of the synchronization primi-
tives we provide for our model of computation.

2.1.6 Semantics for parallel architectures

We explored the use of formal semantics to reason about the behavior of software designed to be
executed on a parallel architecture. One aim of this research was to develop mathematical tools
to formulate common parallel program design styles and to make it easier to design and analyze
parallel programs.

2.1.7 Coping with heterogeneity in software architecture

For software, as for buildings, no single architectural style can solve all problems:
Heterogeneity is inevitable. Just as inevitably, diverse components and systems will have to
work together. Distinct architectural styles often require different component packaging and in-
teractions; these complicate the interoperation problem. We need to improve our ability to
recognize mismatches among heterogeneous parts, to organize our current ad hoc techniques for
coping with these mismatches, and to develop design guidance for selecting the appropriate mis-
match resolution technique for each specific problem. [Shaw 95a] lays out a preliminary struc-
ture for discussing the problem and suggests useful directions.

2.1.8 A software design paradigm based on process control

‘A standard demonstration problem in object-oriented programming is the design of an
automobile cruise control. This design exercise demonstrates object-oriented techniques well,
but it does not ask whether the object-oriented paradigm is the best one for the task. In [Shaw
94a] we examine the alternative view that cruise control is essentially a control problem. We
present a new software organization paradigm motivated by process control loops. The control
view leads us to an architecture that is dominated by analysis of a classical feedback loop rather
than by the identification of discrete stateful components to treat as objects. The change in ar-
chitectural model calls attention to important questions about the cruise control task that aren’t
addressed in an object-oriented design.

2.1.9 A software systems architectures course

Previously, we summarized experience with a course taught at Carnegie Mellon on architectures
for software systems. This course serves as an important transition vehicle for some of the Com-
posable Systems research. A follow-on report [Garlan et al. 94a] collects and makes public the
course materials, including lecture slides and assignments.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-4 COMPOSABLE SOFTWARE SYSTEMS

2.1.10 Architectural mismatch

Many would argue that future breakthroughs in software productivity will depend on our ability
to combine existing pieces of software to produce new applications. An important step towards
this goal is the development of new techniques to detect and cope with mismatches in the as-
sembled parts. Some problems of composition are due to low-level issues of interoperability,
such as mismatches in programming languages or database schemas. However, in [Garlan et al.
95] we highlight a different, and in many ways more pervasive, class of problem: architectural
mismatch. Specifically, we use our experience in building a family of software design environ-
ments from existing parts to illustrate various mismatch types centering around the assumptions
areusable part makes about the structure of the application in which it is to appear. Based on
this experience we show how an architectural view of the mismatch problem €xposes some
thorny, fundamental problems for software composition and suggests possible research avenues
to solve them. '

2.1.11 Using architectural style

A central aspect of architectural design is the use of recurring organizational patterns and idioms,
or architectural styles. Unfortunately, the use of architectural styles is almost completely ad hoc.
What is needed is a more rigorous basis for understanding architectural style and ways to exploit
it. In [Garlan 95b] we briefly outline and compare three approaches to providing such a basis.

2.1.12 Subtyping in object-oriented languages

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the
use of type families, in which higher level supertypes capture the behavior that all of their sub-
types have in common. For this methodology to be effective, it is necessary to have a clear
understanding of how subtypes and supertypes are related. In [Liskov and Wing 94a], we take
the position that the relationship should ensure that any property proved about supertype objects
also holds for its subtype objects. We present two ways of defining the subtype relation, each of
which meets this criterion, and each of which is easy for programmers to use. The subtype
relation is based on the specifications of the sub- and supertypes; we present a way of specifying
types that makes it convenient to define the subtype relation. We also discuss the ramifications
of this notion of subtyping on the design of type families.

2.1.13 Composing transactional concepts

In [Haines et al. 94] we describe the design of a transaction facility for a language that supports
higher-order functions. We factor transactions into four separable features: persistence, un-
doability, locking, and threads. Then, relying on function composition, we show how we can put
them together again. Our modular approach towards building transactions enables us to con-
struct a model of concurrent, nested, multi-threaded transactions, as well as other non-traditional
models where not all features of traditional transactions are present. Key to our approach is the
use of higher-order functions to make transactions first-class. Not only do we get clean com-
posability of transactional features, but also we avoid the need to introduce special control and
block-structured constructs as done in more traditional transactional systems. We implemented
our design in Standard ML of New Jersey.

FINAL REPORT 1993-1999 . SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-5

2.1.14 Applying formal methods to distributed systems

The notion of belief has been useful in reasoning about authentication protocols. In [Mummert
et al. 94] we show how the notion of belief can be applied to reasoning about cache coherence in
a distributed file system. To the best of our knowledge, this is the first formal analysis of this
problem. We used an extended subset of a logic of authentication [Burrows, Abadi, Needham]
to help us analyze three, cache-coherence protocols: a validate-on-use protocol, an invalidation-
based protocol, and a new large granularity protocol for use in weakly-connected environments.
We present two runs from the large granularity protocol. Using our variant of the logic of au-
thentication, we were able to find flaws in the design of the large granularity protocol. We found
the notion of belief not only intuitively appealing for reasoning about our protocols, but also
practical, given the optimistic nature of our system model.

2.1.15 Automated analysis of design

In [Jackson 94a] we show how properties of a design that involve undecidable claims about un-
bounded objects (typical in software designs) can sometimes be determined automatically by
model-checking techniques. The method involves the application of abstractions to different
datatypes and a novel use of symbolic abstraction to compare the contents of sets and relations.

[Jackson 94b] introduces a promising new reduction technique that can reduce by a large factor
the search space for checking a software design. Using symmetry, the paper shows how finding’
flaws in a small specification of a phone switch can reduce the state space search by a factor of
up to 100. As the size of the state space increases, the reduction factor increases, too: In a more
recent example we obtained a reduction of over 5,500. This reduces an hour’s analysis to less
than a second and a year’s analysis to less than two hours, raising the prospect of automatically
checking designs that have not previously been regarded as amenable to automatic checking.

2.1.16 Specifying weak sets

In [Wing 95a, Wing and Steere 95] we present formal specifications of a new abstraction, weak
sets, that can be used to alleviate high latencies when retrieving data from a wide-area infor-
mation system such as the World Wide Web. In the presence of failures, concurrency, and dis-
tribution, clients performing queries may observe behavior that is inconsistent with the stringent
semantic requirements of mathematical sets. For example an element retrieved and returned to
the client may be subsequently deleted before the query terminates. We chose to specify for-
mally the behavior of weak sets because we wanted to understand the varying degrees of incon-
sistency clients might be willing to tolerate and to understand the tradeoff between providing
strong consistency guarantees and implementing weak sets efficiently. Our specification asser-
tion language uses a novel construct that lets us model reachability explicitly; with this language,
we can distinguish between the existence of an object and its accessibility. These specifications
were instrumental in understanding the design space, and we are currently implementing the
most permissive of the specifications in several types of UNIX system.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-6 COMPOSABLE SOFTWARE SYSTEMS

2.1.17 Abstract models of memory management

Most specifications of garbage collectors concentrate on the low-level algorithmic details of how
to find and preserve accessible objects. Often, they focus on bit-level manipulations such as
“‘scanning stack frames,”” ‘‘marking objects,”” ‘‘tagging data,”’ etc. While these details are im-
portant in some contexts, they often obscure the more fundamental aspects of memory manage-
ment: What objects are garbage and why?

We developed a series of calculi that are just low-level enough that we can express allocation
and garbage collection, yet are sufficiently abstract that we can formally prove the correctness of
various memory management strategies [Morrisett et al. 95]. By making the heap of a program
syntactically apparent, we can specify memory actions as rewriting rules that allocate values on
the heap and automatically dereference pointers to such objects when needed. This formulation
permits the specification of garbage collection as a relation that removes portions of the heap
without affecting the outcome of the evaluation.

Our high-level approach allows us to specify, in a compact manner, a wide variety of memory
management techniques, including standard trace-based garbage collection, (i.e., the family of
copying and mark/sweep collection algorithms), generational collection, and type-based, tag-free
collection. Furthermore, since the definition of garbage is based on the semantics of the under-
lying language instead of the conservative approximation of inaccessibility, we are able to
specify and prove the idea that type inference can be used to collect some objects that are acces-
sible but never used.

2.1.18 Polymorphic closure conversion

We studied the typing properties of closure conversion for the simply-typed and polymorphic
A-calculi [Minamide et al. 96]. Unlike most accounts of closure conversion that only treat the
untyped A-calculus, our account translates well-typed source programs to well-typed target
programs. This allows later compiler phases to exploit types and facilitates proving correctness.
Our account of closure conversion for the simply-typed language takes advantage of Pierce and
Turner’s simple model of objects by mapping closures to existentials. Closure conversion for the
polymorphic language requires additional type machinery, namely translucency in the style of
Harper and Lillibridge’s module calculus, to express the type of a closure.

2.1.19 An architecture for a family of instrumentation systems

An important challenge for formal methods is to demonstrate their ability to scale to cost-
effective specification of large-scale systems. In [Garlan and Delisle 95a] we describe our ex-
perience in applying formal methods to developing of a family of industrial products. The ap-
proach addresses problems of scalability by focusing on an architectural level of abstraction—
concentrating on overall system organization and clean compositional techniques for a family of
designs, rather than on the complete specification of a particular system.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS : 27

2.1.20 View structuring

Specifications have traditionally been decomposed hierarchically into components. For require-
ments engineering in particular, it is often more useful to decompose into parallel "views." In-
stead of organizing the specification according to functional components, different aspects of the
system are separated into different views. For example, a word processor might have a line-
based view to describe scrolling, a word-based view to describe spelling checks and word
search/replace, a grid view to describe cursor motion, and so on.

View structuring gives a better separation of concerns than traditional structuring styles and of-
fers many advantages. It allows simpler analysis, since many properties can be evaluated within
a single view. It is especially helpful in requirements elicitation, because views can be added
incrementally, and different views can record the functionality of the system as required by dif-
ferent users. It may also lead to more reuse, since view structuring disentangles different aspects
of a system’s function, that otherwise tend to complicate the structure of components and prevent
reuse.

[Jackson 95a] shows how the Z specification language can support view structuring in a simple
and direct fashion, disussing the advantages and disadvantages of Z for this purpose. In this
reporting period we made extensive improvements to the paper based on referees’ comments.
We expect the paper to be published in the next few months.

2.1.21 Architectural issues in software reuse

One of the major impediments to effective software reuse is the implicit nature of the assump-
tions about how components interact with each other. When these don’t match, system integra-
tion is unduly complex. In [Shaw 95b, Shaw 95a] we examine the problem and start to analyze
what people actually do about it.

2.1.22 Teaching mathematics to software engineers

Based on experience in teaching formal methods to practicing and aspiring software engineers
[Wing 95b], updated in [Wing 96], presents some of the common stumbling blocks faced when

writing formal specifications. The most conspicuous problem is learning to abstract. We ad-

dress all these problems indirectly by giving a list of hints to specifiers. Thus this paper should

be of interest not only to teachers of formal methods, but also to their students.

2.2 Architectural languages

The software composition problem has all the elements that make language design an ap-
propriate vehicle for a solution: elements, composition rules, abstractions, and closure. The
components and connectors of various kinds are the elements. The rules that determine how
systems can be built out of components and connectors are the composition rules. Idiomatic
usage in existing systems shows the need for abstractions, and closure rules are needed to deter-
mine whether an arbitrary composition can be used. We are developing both general-purpose
architectural languages and specialized languages for different compositional styles, application-
oriented families of systems, and specific compositional patterns.

As the size and complexity of software systems increases, the design and specification of overall

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-8 COMPOSABLE SOFTWARE SYSTEMS

system structure—software architecture—emerges as a central concern. Architectural issues in-
clude the gross organization of the system, protocols for communication and data access, assign-
ment of functionality to design elements, and selection among design alternatives. [Shaw et al.
96] explains the inner workings of connector implementation. [Shaw et al. 95b] describes
abstractions for software architecture and tools to support such abstractions.

Currently system designers have at their disposal two primary ways of defining software ar-
chitecture: They can use the modularization facilities of existing programming languages and
module interconnection languages, or they can describe their designs using informal diagrams
and idiomatic phrases, such as ‘‘client-server organization.”’

In [Shaw and Garlan 94] we explain why neither alternative is adequate. We consider the nature
of architectural description as it is performed informally by systems designers. Then we show
that regularities in these descriptions can form the basis for architectural description languages.
Next, we identify specific properties that such languages should have. Last, we illustrate how
current notations fail to satisfy those properties.

2.2.1 A theory and description language for component interactions

A formal basis for describing and analyzing architectural designs represents an important step
towards an engineering discipline for composable systems. In [Allen and Garlan 94a, Allen and
Garlan 94b, Garlan 94] we present a theory for one aspect of architectural description: the inter-
actions between components. The key idea is to define architectural connectors as first-class
semantic entities. These entities are specified as a collection of protocols that characterize each
of the interaction participant roles and how these roles interact. In these papers we illustrate how
this scheme can be used to define a variety of common architectural connectors. We provide a
formal semantics and show how this leads to a sound deductive system in which architectural
compatibility can be checked in a way analogous to type checking in programming languages.

2.2.2 A constraint-based, object-oriented, programming language

[Horn 93] presents a new model of programming, called constrained objects, in which algebraic
constraints are used as a foundation for object-oriented programming. In this model objects are
encapsulated constraint systems that communicate with each other via message-passing. Each
object maintains a consistent state under perturbation from messages sent by other objects using
a constraint satisfaction process. One object may inherit from another: The set of constraints
from the first object is conjoined with the set of constraints from the second, and the subsequent
satisfaction of the combined constraints ensures the semantic consistency of the derived object.

2.2.3 Patterns for software architectures

The patterns community is exploring ways to explain software design strategies. We’re invest-
ing energy in keeping contact between the architecture community and the pattern community—
their objectives are similar in many respects. [Shaw 95c¢] sketches pattern-like descriptions of
architectural styles.

[Shaw 94b] appeared as a book chapter in Spring 1995. It appears that this book will be popular
in the patterns community. This work is another part of the ongoing effort to interact with the
patterns community.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 29

2.2.4 Formalizing architectural style

The software architecture of most systems is usually described informally and diagrammatically
by means of boxes and lines. To make these descriptions meaningful, the diagrams are under-
stood by interpreting the boxes and lines in specific, conventionalized ways. The informal, im-
precise nature of these interpretations has a number of limitations. In [Abowd et al. 95] we con-
sider these conventionalized interpretations as architectural styles and provide a formal
framework for their uniform definition. In addition to providing a template for precisely defin-
ing new architectural styles, this framework allows for analysis within and between different
architectural styles.

2.2.5 Re-design of UniCon

We completed the design and implementation of the initial version of the UniCon language
(Shaw&.94.Abstractions). At the beginning of this, we began a second version. The purposes of
the system and reimplementation are (1) to take advantage what we learned in the first version
and make it straightforward to add new components and connectors, (2) to substantially the
graphical notation, (3) to integrate graphical interface and external tools properly with the of the
system, and (4) to resolve some difficulties building hierarchical systems and change the system
builder ‘‘make’’ to Odin.

2.3 Legacy systems

Many legacy systems represent a huge investment, and maintainers cannot afford to completely
rewrite such pre-existing software to enable using new tools and methods. Bringing legacy sys-
tems into our architectural framework will benefit people who maintain them: It will enable them
to analyze existing systems and understand them as well as new ones. This knowledge will
provide support for connecting several existing systems into larger systems. Secondly, we an-
ticipate that accommodating legacy systems may lead to results and insights that will be useful in
new systems. :

We are working on two major tasks related to legacy systems. The first task involves using
automatic analyses to understand a system’s structure and recover its architectural design, which
is usually not expressed directly. With this information we generate architectural views for
specific purposes, such as a particular analysis or connection. These views reveal relationships
between components and indicate how parts of the system’s functionality are distributed
throughout its components. They also indicate how to identify the components involved in dis-
charging particular functional requirements.

2.3.1 Aspect: detecting bugs with abstract dependences

‘‘Aspect’ is a tool for detecting bugs in code, using partial formal specifications against which
the code can be analyzed automatically. In moving towards applying these ideas to larger sys-
tems issues, we have focused on the use of abstraction in Aspect and shown how a complex
editor buffer can be analyzed in terms of simple specifications not much longer than type
declarations.

[Jackson 94c] rigorously explains the basis of Aspect and completely recasts the semantic model

SOFTW ARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-10 . COMPOSABLE SOFTWARE SYSTEMS

in the mold of an Algol-like language (where previous work assumes the semantic model of
LISP).

2.3.2 Viewpoint composition in model-based specifications

Other work focuses on requirements specification. We are investigating a new approach to
structuring a specification. Rather than dividing a system into modules and specifying them
separately, thus giving complete descriptions of parts of the system, we construct the specifica-
tion as a collection of views, each being a partial description of the entire system. The idea of
views is not new, but ours is the first systematic exposition of the idea in the context of a con-
ventional, model-based specification language such as Z.

2.3.3 Reverse engineering

In collaboration with AT&T we have developed a technique to generate automatically a report
describing the differences between two versions of a procedure. We have built a prototype tool
and tested the idea on examples from the AT&T Autoplex system. Related work on semantic
differencing has focused on highlighting portions of code that are affected by any change,
however slight. As a result even as small a change as fixing an off-by-one error can appear to
have wide repercussions. Our work, on the other hand, uses a novel representation of code,
based on Aspect, to report only the differences that have architectural significance.

The larger part of our research into reverse engineering involves the construction of a tool to
answer queries about C code. We sought to build a reverse-engineering tool that provides an
editor interface, and answers semantic queries that no other then-current tool could handle, such
as “‘where was this variable—the one identified by the cursor—set?”’, or ‘‘where is the proce-
dure that used this global variable to affect this field of this structure?’’ We wished to
demonstrate a small set of powerful but low-level queries and then showed that more abstract
architectural analyses can be built as editor macros on top of these.

2.3.4 Advances in reverse engineering

We performed a series of experiments—with early versions of our reverse engineering tool and
on paper—and devised a new way to extract partial views of a program, a method that offers
several advantages over existing techniques (such as slicing).

We invented and implemented a new program representation and algorithms to support this ex-
traction process [Jackson and Rollins 94a]. We then worked to migrate this first, inefficient
prototype into a more robust tool.

We also completed a paper [Jackson and Ladd 94] describing a tool that generates a report of the
semantic consequences of changes to code.

We have completed a prototype implementation of Chopshop, a reverse engineering tool for C
programs. Chopshop handles the entire ANSI C language. It generates program slices in textual
and pictorial form.

Existing program slicers have focused on statement-level analysis. For large systems, this ap-

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-11

proach fails: The slices are too big, and crucial information is not presented. In particular, a
slice does not indicate why a procedure is included. Chopshop performs a fine-grained,
statement-level analysis (thus retaining semantic accuracy), but can present its results at the
module-level. The user can select a data structure, or a small part of a data structure, and ask
what influences its value or what it influences. Chopshop, in response, can highlight code and
display pictures showing the procedures that are relevant, along with information about why they
are relevant.

[Jackson and Rollins 94b] presents the model on which Chopshop is based. It makes two
primary contributions. First, it shows how interprocedural slices can be calculated in a modular
fashion, using simpler algorithms than existing techniques and obtaining more accurate results.
Second, it shows how the role of procedure calls in a slice can be summarized and presented.

[Jackson and Rollins 94c] presents Chopshop’s filtering mechanisms. It shows, using the code
of a UNIX utility as an example, how global information about the role of procedures in a slice
can be presented in a picture, while hiding local information that can be determined easily by
examining code in the vicinity of the query.

We developed a "call graph slicer” based on the Chopshop tool that extracts slices of large C
programs. Unlike a conventional slicer that takes a query about the appearance of a variable in
some statement, and generates as output a subprogram, giving all statements that might affect the
chosen variable, our slicer operates on the call graph. The user selects an argument to a proce-
dure; the tool displays the relevant portion of the call graph with arrows between procedures
indicating relevant dataflow, labelled with the variables responsible for the flow.

2.4 Tools and environments

Existing research has shown us how to build open, integrated programming environments whose
basic unit of composition is a programming language module. We are now working on the next
step: providing environments that scale up to compositional systems. Toward this goal we are
building on existing environment technology such as persistent object bases, tool integration
mechanisms, and user-interface frameworks. To these we are adding capabilities such as those
found in development environments that support constructing systems in terms of well-defined
components and connectors. In particular we are extending current technology for generating
specialized design environments that exploit the properties of specific compositional styles.

2.4.1 A taxonomy of architectures

We continued organizing and taxonomizing the architectural models that software developers
use in practice [Garlan and Shaw 94c]. We presented a tutorial on this material at SIGSOFT in
December. The tutorial was well attended and well-received by both university and industrial
participants. We has been invited back for the next SIGSOFT, in late 1994.

2.4.2 Different notions of subtyping

The use of hierarchy is an important component of object-oriented design. Hierarchy allows the
use of type families, in which higher level supertypes capture the behavior that all of their sub-
types have in common. For this methodology to be effective, it is necessary to have a clear

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-12 COMPOSABLE SOFTWARE SYSTEMS

understanding of how subtypes and supertypes are related. Our work takes the position that the
relationship should ensure that any property proved about supertype objects also holds for its
subtype objects. In [Liskov and Wing 93] we present two ways of defining the subtype relation,
each of which meets this criterion, and each of which is easy for programmers to use. The
subtype relation is based on the specifications of the sub- and supertypes; we present a way of
specifying types that makes it convenient to define the subtype relation. We also discuss the
ramifications of this notion of subtyping on the design of type families.

2.4.3 New compositional mechanisms for systems

Implicit invocation based on event announcement is an increasingly important technique for
composing systems. However, the use of this technique has largely been confined to tool integra-
tion systems (in which tools exist as independent processes) and special-purpose languages (in
which specialized forms of event broadcast are designed into the language from the start).
[Notkin et al. 93] broadens the class of systems that can benefit from this approach by showing
how to augment general-purpose programming languages with facilities for implicit invocation.

2.4.4 Formalizing architectural connections

We consolidated our work on developing the Wright specification language. Wright now sup-
ports the formal description of architectural connectors as first class entities. We reported our
work in [Allen and Garlan 94c, Allen and Garlan 94a].

2.4.5 Specifications in the Z language

[Jackson 94a] is our first and speculative step into automatic analysis of Z specifications. We
laid the theoretical foundation for a technique that can check an infinite design by examining
only a finite number of cases. We built a ‘‘baby”’ prototype that successfully checked several
theorems from the literature, analyses previously performed only by hand.

[Jackson 95a] completes some specification work. We had previously shown how the notion of
“‘projections’” could be used to structure specifications in a new way that gives a better separa-
tion of concerns than existing forms of structuring, demonstrating practical utility by fully
specifying a small (but real) Macintosh editor. We later simplified the ideas and worked out how
they could benefit specifications written, in a more conventional manner, in the Z language.

2.4.6 Exploiting style in architectural design environments

To make an effective discipline of composable systems, it is becoming increasingly important to

support architectural description and analysis with tools and environments. In [Garlan et al.

94b] we present a prototype system for developing architectural design environments that exploit
architectural styles to guide software architects in producing specific systems. The primary tech-
nical innovations of this research were:

* A generic object model for representing architectural designs

® The characterization of architectural styles as specializations of this object model
(through subclassing)

* A practical toolkit for creating an open architectural design environment from a
description of a specific architectural style.

FINAL REPORT 1993-1999 SOFfWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-13

2.4.7 Signature matching for software hbranes

Signature matching is a method for organizing, navigating through, and retrieving from software
libraries. In [Zaremski and Wing 94] we consider two kinds of software library components—
functions and modules— and, hence, two corresponding kinds of matching. The signature of a
function is simply its type; the signature of a module is a multiset of user-defined types and a
multiset of function signatures. For both functions and modules we consider not just exact
match, but also various flavors of relaxed match. We describe various applications of signature
matching as a tool for using software libraries, using results from our implementation of a func-
tion signature matcher written in Standard ML.

2.5 Software Architectures

Our accomplishments in the area of software architectures fall into several categories: reuse at
the software architecture level, formalizing descriptions of software architectures, architectural
styles (including making comparisons between them, and casting them into patterns for the pat-
terns community), and the development of an interchange language to translate architectural
descriptions from one architectural description language (ADL) to another.

Our research in software architectures evolved to include the following additional categories:
architecture classification/taxonomy, interoperability and evolution, architecture description and
analysis, reasoning about software architecture, research on architecture description languages
(ADLs), development to support ADLs, specific examples and case studies, and design support
in the form of architectural styles.

We have also made progress in the following research areas: making specifications of com-
ponents into evolving documents (and acknowledging their incompleteness), and being able to
define non-primitive connectors in an architectural description.

In addition, we have organized a model problem collection for the software architecture com-
munity to discuss, produced a summary of the conclusions from the First International Workshop
on Architectures for Software Systems, and produced a work describing the challenging research
problems in Software Architecture.

2.5.1 Reuse at the software architecture level

The first work below describes how the concept of "architectural style" is useful in supporting
reuse at the software architecture level, and more specifically how the Aesop system’s Software
Shelf supports this. The second work describes some of the mismatch problems encountered
while trying to reuse existing off-the-shelf software to compose a system.

Style-based reuse for software architecture

Although numerous mechanisms for promoting software reuse have been proposed and im-
plemented over the years, most have focused on the reuse of implementation code. There is
much conjecture and some empirical evidence, however, that the most effective forms of reuse
are generally found at more abstract levels of software design. In [Monroe 96a] we discuss
software reuse at the architectural level of design. Specifically, we argue that the concept of
"architectural style" is useful for supporting the classification, storage, and retrieval of reusable

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-14 COMPOSABLE SOFTWARE SYSTEMS

architectural design elements. We briefly describe the Aesop system’s Software Shelf, a tool that
assists designers in selecting appropriate design elements and patterns based on stylistic infor-
mation and design constraints.

Architectural mismatch: why reuse is so hard

Many would argue that future breakthroughs in software productivity will depend on our ability
to combine existing pieces of software to produce new applications. An important step towards
this goal is the development of new techniques to detect and cope with mismatches in the as-
sembled parts. Some problems of composition are due to low-level issues of interoperability,
such as mismatches in programming languages or database schemas. However, in [Garlan

95c] we highlight a different, and in many ways more pervasive, class of problem: architectural
mismatch. Specifically, we use our experience in building a family of software design environ-
ments from existing parts to illustrate a variety of types of mismatch that center around the as-
sumptions a reusable part makes about the structure of the application in which is to appear.
Based on this experience we show how an architectural view of the mismatch problem exposes
some fundamental, thorny problems for software composition and suggests possible research
avenues needed to solve them. This paper is a revised version of a similar paper that appeared at
ICSE-17.

- 2.5.2 Formalizing descriptions of software architecture
Formal methods offer a powerful approach to analyzing software architectures and architectural

styles, and for describing the architecture of real systems. Our research addresses real world
examples such as commercial electronic instruments and a military weapons system.

Formulations and formalisms in software architecture

Software architecture is the level of software design that addresses the overall structure and
properties of software systems. It provides a focus for certain aspects of design and development
that are not appropriately addressed within the constituent modules. Architectural design
depends heavily on accurate specifications of subsystems and their interactions. These specifica-
tions must cover a wide variety of properties, so the specification notations and associated
methods must be selected or developed to match the properties of interest. Unfortunately, the
available formal methods are only a partial match for architectural needs, which entail descrip-
tion of structure, packaging, environmental assumptions, representation, and performance as well
as functionality. Understanding what needs to be formalized is a prerequisite for deVlSlng or
selecting a formal method. For software architecture, much of this understanding arises through
progressive codification, which begins with real-world examples and creates progressively more
precise models that eventually support formalization. In [Shaw 95d] we describe such an ap-
proach and explore the relation between emerging models and the selection, development and
use of formal systems.

Formalizing architectural style

The software architecture of most systems is usually described informally and diagrammatically
by means of boxes and lines. For these descriptions to be meaningful, the diagrams are under-
stood by interpreting the boxes and lines in specific, conventionalized ways. The informal, im-
precise nature of these interpretations has a number of limitations. In [Abowd 96] we consider
these conventionalized interpretations as architectural styles and provide a formal framework for

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-15

their uniform definition. In addition to providing a template for precisely defining new styles,
this framework facilitates analysis within and between different existing styles.

Formal specification of an architecture for a family of systems

[Garlan and Delisle 95b] describes industrial experience developing a formal architectural
model for a family of oscilloscopes. This paper is a revised version of a similar paper that ap-
peared in IEEE Software, September 1990.

A case study in architectural modelling

Software architecture is receiving increasing attention as a critical design level for software sys-
tems. However, the current practice of architectural description is largely informal and ad hoc,
with the consequence that architectural documents serve as a poor communication mechanisms,
are difficult to analyze, and may have very little relationship to the implemented system. In an
attempt to address these problems several researchers have experimented with formalisms for
architectural specification and modelling. One such formalism is Wright. In [Allen 96a] we show
how Wright can be used to provide insight into an architectural design by modelling a prototype
implementation of part of the AEGIS Weapons System.

2.5.3 Architectural styles

A comparison of styles for software architecture

In [Shaw 95¢] we examine a variety of different solutions to a specific design problem. The
comparison reveals that each design relies on several models or architectural styles. We raise
questions of (a) choosing the architecture that matches the problem at hand and (b) ensuring
consistency of several overlapping views.

Some patterns for software architecture

Software designers rely on informal "patterns,” or idioms, to describe the architectures of their
software systems — the configurations of components that make up the systems. In [Shaw

95c] we establish a relationship with the patterns community by casting several popular architec-
tural styles as patterns.

2.5.4 An interchange language for software architecture

A number of architectural description languages (ADLs) have been developed to support the
formal representation and analysis of software architectures. Each such ADL provides certain
complementary capabilities supporting architectural development. Unfortunately, however, each
ADL and its supporting toolset typically operate in a stand-alone fashion, making it difficult to
combine multiple tools, share architectural descriptions, or build on previous work in producing
new languages and tools. ACME was developed as a joint effort of the architectural research com-
munity to provide a common interchange format for architectural design tools. ACME provides a
structural framework for characterizing architectural designs together with liberal annotation
facilities for including additional ADL-specific auxiliary information.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-16 COMPOSABLE SOFTWARE SYSTEMS

2.5.5 Software architecture primitives

The works below describe research regarding components and connectors. The first work ad-
dresses the way formalists think about specifications of components; the second describes
abstractions for connectors, and the information required by a designer to implement a new
abstraction in a specific architecture description language called UniCon.

The difference between what a component does and what we know it does

In [Shaw 96] we address the discrepancies between the way formalists think about specifications
and the practical inability to anticipate and specify every property of a component that someone
might depend on. We propose an approach to making specifications into evolving documents
that capture what is currently known about a component.

Abstractions and implementations for architectural connections

The architecture of a software system shows how the system is constructed from components.
The properties of the system depend critically on the character of the interactions among the
components. Although software designers have good informal abstractions for these interactions,
the abstractions are poorly supported by the available languages and tools. UniCon provides a
rich selection of abstractions for the connectors that mediate interactions among components. To
create systems using the connector abstractions, one needs to produce and integrate not only the
object code for components, but also a variety of other run-time products. To extend the set of
connectors supported by UniCon, one needs to identify and isolate many kinds of information in
the compiler, graphical editor, and associated tools. In [Shaw et al. 96] we describe the role of
connector abstractions in software design, the connector abstractions currently supported by
UniCon, and implementation issues associated with supporting an open-ended collection of con-
nectors. We describe progress toward being able to define non-primitive connectors.

2.5.6 Research conclusions and directions

The first work below summarize some important conclusions from the First International
Workshop on software architecture. The last works describe a common set of problems around
which the software architecture community might organize themselves to exhibit techniques and
compare results, and describe the open problems in software architecture.

The first workshop on architectures for software systems

[Garlan 95d] summarizes the conclusions of the First International Workshop on Architectures
for Software Systems, held in conjunction with the 17th International Conference on Software
Engineering, April 1995.

2.5.7 Architecture classification/taxonomy

Toward boxology: preliminary classification of architectural styles

Software architects use a number of commonly-recognized "styles" to guide their design of sys-
tem structures. Each of these is appropriate for some classes of problems, but none is suitable for
all problems. How, then, does a software designer choose an architecture suitable for the
problem at hand? Two kinds of information are required: (1) careful discrimination among the
candidate architectures and (2) design guidance on how to make appropriate choices. In

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-17

[Clements 96] we support careful discrimination with preliminary classification of styles. We
use a two-dimensional classification strategy with control and data issues as the dominant or-
ganizing axes. We position the major styles within this space and use finer-grained discrimina-
tions to elaborate variations on the styles. This provides a framework for organizing design
guidance, which we partially flesh out with rules of thumb.

2.5.8 Architectural evolution

Conversion of batch systems to support interaction

Software often evolves from batch to interactive use. Because these two usage styles are so
different, batch systems usually require substantial changes to support interactive use. Specific
issues that arise during conversion include: assumptions about system execution time, incremen-
tal and partial processing, scope of processing, unordered and repeated processing, and error
handling. Addressing these issues affects the implementation in the areas of memory manage-
ment, assumptions and invariants, computational organization, and error handling. In [DeLine et
al. 97] we present lessons for practitioners who are faced with similar types of conversions. We
use as a working example our conversion of the batch processor for the UniCon architecture
description language into an interactive architecture editor. We summarize with a checklist of
design and implementation considerations.

2.5.9 Architecture description and analysis

ACME: An architecture description interchange language

Numerous architectural description languages (ADLs) have been developed, each providing
complementary capabilities for architectural development and analysis. Unfortunately, each
ADL and supporting toolset operates in isolation, making it difficult to integrate those tools and
share architectural descriptions. ACME is being developed as a joint effort of the software ar-
chitecture research community as a common interchange format for architecture design tools.
ACME provides a structural framework for characterizing architectures, together with annotation
facilities for additional ADL-specific information. This scheme permits subsets of ADL tools to
share architectural information that is jointly understood, while tolerating the presence of infor-
mation that falls outside their common vocabulary. In [Garlan 97a] we describe ACME’s key fea-
tures, rationale, and technical innovations.

Architectural styles, design patterns, and objects

Software system builders are increasingly recognizing the 1mportance of exploiting design
knowledge in the engineering of new systems. One way to do this is to define an architectural
style for a collection of related systems. The style determines a coherent vocabulary of system
design elements and rules for their composition. By structuring the design space for a family of
related systems, a style can, in principle, drastically simplify the process of building a system,
reduce costs of implementation through reusable infrastructure, and improve system integrity
through style-specific analyses and checks.

Like architectural style, object-oriented design patterns attempt to capture and exploit design
knowledge to ease the process of designing software systems and reusing proven designs. There

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-18 COMPOSABLE SOFTWARE SYSTEMS

are, however, significant differences in the roles and capabilities of architectural styles and
object-oriented design patterns, as there are between architectural design and object-oriented
design. In [Monroe 97] we illustrate the relationship between software architecture and object-
oriented design, as well as the relationship between architectural styles and design patterns.

Formal modeling and analysis of the HLA RTI

The High Level Architecture Run Time Infrastructure (HLA RTI) is a complex artifact, support-
ing several classes of interaction (e.g., federation management, object management, time
management). A critical challenge in producing an RTI architectural framework (and its as-
sociated simulation interface specifications) is to develop confidence that its specification is
well-formed and complete. In [Garlan 97b] we describe on-going work in formally modelling the
HLA both to document the standard more precisely, and to analyze it for anomalies, omissions,
inconsistencies, and ambiguities. The technical basis for this work is the use of a formal architec-
tural description language, called Wright, and its accompanying toolset.

2.5.10 Reasoning about software architecture

Towards a formal treatment of implicit invocation

In [Dingel 97] we develop a formal basis for reasoning about certain classes of implicit invoca-
tion systems (sometimes called publish-subscribe systems). The work provides an operational
and denotational semantics and illustrates how one can reason about the behavior of implicit
invocation systems.

Architectural unification

Many software designs are produced by combining and elaborating existing architectural design
fragments. These fragments may be design patterns, partially thought-out ideas, or portions of
some previously-developed system design. To provide mechanized support for this activity it is
necessary to have a precise characterization of when and how two or more architectural frag-
ments can be combined. In [Melton 97] we describe extensions to notations for software ar-
chitecture to represent incomplete design fragments, and algorithms for combining fragments in
a process analogous to unification in logic.

Style-based refinement for software architecture

A question that frequently arises for architectural design is "When can I implement a design in
style S1 using a design in style S2?". In [Garlan 96a) we propose a technique for structuring a
solution to this kind of problem using the idea of substyles. This technique leads to a two-step
process: First, useful subsets of a family of architectures are identified; and second, refinement
rules specific to these subsets are established. We argue that this technique, in combination with
an unconventional interpretation of refinement, clarifies how engineers actually carry out ar-
chitectural refinement and provides a formal framework for establishing the correctness of those
methods.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-19

2.5.11 Architecture description languages

The difference between what a component does and what we know it does

Conventional doctrine holds that specifications are sufficient, complete, static, and
homogeneous. For system-level specifications, especially for software architectures and their

* components, conventional doctrine often fails to hold. Specifications for real software must be
incremental, extensible, and heterogeneous. To support such specifications, our notations and
tools must be able to extend and manipulate structured specifications. In [Shaw 96] we propose
an approach to making specifications into evolving documents that capture what is currently
known about a component. The UniCon architecture description language introduces
credentials, a property-list form of specification that supports evolving heterogeneous specifica-
tions and their use with system-building and analysis tools.

Abstractions and implementations for architectural connections

The architecture of a software system shows how the system is constructed from components.
The system properties depend critically on the character of the component interactions. Al-
though software designers have good informal abstractions for these interactions, the abstrac-
tions are poorly supported by the available languages and tools. UniCon provides a rich selec-
tion of abstractions for the connectors that mediate interactions among components. To create
systems using the connector abstractions, one needs to produce and integrate not only the object
code for components, but also a variety of other run-time products. To extend the set of connec-
tors supported by UniCon, one needs to identify and isolate many kinds of information in the
compiler, graphical editor, and associated tools. In [Shaw et al. 96] we describe the role of con-
nector abstractions in software design, the connector abstractions currently supported by
UniCon, and implementation issues associated with supporting an open-ended collection of con-
nectors.

User-defined element types and architectural styles

When considering the design of an architecture description language (ADL) to be used as part of
a software developer’s daily practice, two goals merit attention. First, the language should sup-
port the easy definition of new element types and architectural styles. Second, it should play a
central role in system construction. In [DeLine 96], we propose an ADL, called UniCon-2, that
addresses these goals with its flexible type system, its duty construct, and its extensible compiler
architecture based on OLE. This ADL provides a good starting point for exploring the architec-
tural description of families of systems and flexible componentry.

2.5.12 Development to support ADLs

Style-based reuse for software architecture

Although numerous mechanisms for promoting software reuse have been proposed and im-
plemented, most have focused on the reuse of implementation code. There is much conjecture
and some empirical evidence, however, that the most effective forms of reuse are generally
found at more abstract levels of software design. In [Monroe 96a] we discuss software reuse at
the architectural level of design. Specifically, we argue that the concept of "architectural style" is
useful for supporting the classification, storage, and retrieval of reusable architectural design ele-
ments. We briefly describe the Aesop system’s Software Shelf, a tool that assists designers in

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-20 COMPOSABLE SOFTWARE SYSTEMS

selecting appropriate design elements and patterns based on stylistic information and design con-
straints. :

Capturing design expertise in customized software architecture design environments

Software architecture, with its own set of design issues, vocabulary, and goals, has emerged as a
distinct form of abstraction for software systems. Like designers in other disciplines, software
architects can gain significant leverage by using powerful design environments and tools. Such
design tools generally encapsulate a relatively small amount of design expertise that provides the
important functionality of the tool within a relatively large support infrastructure. In [Monroe
96b] we argue that, in order to make the development of specialized architectural design tools
practical, capturing this design expertise so that it can be used to configure architectural design
environments incrementally must be relatively easy and inexpensive.

2.5.13 Examples and case studies

A case study in architectural modelling

Software architecture is receiving increasing attention as a critical design level for software Sys-
tems. However, the current practice of architectural description is largely informal and ad hoc,
with the consequence that architectural documents serve as a poor communication mechanism,
are difficult to analyze, and may have very little relationship to the implemented system. In an
attempt to address these problems ,,several researchers have experimented with formalisms for
architectural specification and modeling. One such formalism is Wright, and in [Allen 96a] we
show how Wright can be used to provide insight into an architectural design by modelling a
prototype implementation of part of the AEGIS Weapons System.

A standards effort as architectural style

In [Allen 96b] we introduce a case study, the DoD "High Level Architecture for Simulations
(HLA)," and briefly discuss our efforts to apply Wright to the HLA. Our work on HLA has
focused on understanding it as an architectural style and concentrates on the Interface Specifica-
tion (IFSpec) description of the "Runtime Infrastructure (RTI)" as the central architectural design
issue. Specifically, we have used Wright to characterize the RTI and analyze a number of its
properties. By providing an analysis of the properties of the RTI as described by the IFSpec, we
can help the standards committee to determine whether the IFSpec ensures the properties that
they want and to discover inconsistencies or other weaknesses of the specification.

Stylized architecture, design patterns, and objects

Software system builders are increasingly recognizing the importance of exploiting design
knowledge when engineering new systems. One way to do this is to define an architectural style
for a collection of related systems. The style determines a coherent vocabulary of system design
elements and rules for their composition. By structuring the design space for a family of related
systems, a style can, in principle, drastically simplify the system building process, reduce im-
plementation costs through reusable infrastructure, and improve system integrity through style-
specific analyses and checks.

Like architectural style, object-oriented design patterns attempt to capture and exploit design
knowledge to ease the process of designing software systems and reusing proven designs. There

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-21

are, however, significant differences in the roles and capabilities of architectural styles and
object-oriented design patterns, as there are between architectural design and object-oriented
design. In [Monroe 97] we illustrate the relationship between software architecture and object-
oriented design, as well as the relationship between architectural styles and design patterns.

Stylized architecture, design patterns, and objects

The software architecture and the design pattern communities have overlapping interests. The
software architecture community is chiefly concerned with structure and organization of large
software systems; the patterns community with exposition of design information. These intersect
in the exposition of design information at the system level. [Shaw et al 96] lays out a framework
for the software engineering community to consider (a) what new ADL capability is suggested
by design patterns and (b) to what extent ADLs are appropriately carriers of pattern information,
and how they should do so.

2.5.14 Design support: architectural styles

An architectural style can be viewed as a coherent set of constraints on software design. In this
section we describe our research pertaining to architectural styles.

Preliminary classification of architectural styles

Software architects use a number of commonly-recognized "styles” to guide their design of sys-
tem structures. In [Clements 96] we begin to classify these styles. We use a two-dimensional
classification strategy with control and data issues as the dominant organizing axes. We position
the major styles within this space and use finer-grained discriminations to elaborate variations on
the styles. This provides a framework for organizing design guidance.

Style-based refinement for software architecture

A question that frequently arises for architectural design is "When can I implement a design in
style S1 using a design in style $2?" In [Garlan 96a] we propose a technique for structuring a
solution to this kind of problem using the idea of sub-styles. This technique leads to a two-step
process in which, first, useful subsets of a family of architectures are identified and, second,
refinement rules specific to these subsets are established. We argue that this technique, in com-
bination with an unconventional interpretation of refinement, clarifies how engineers actually
carry out architectural refinement and provides a formal framework for establishing the correct-
ness of those methods.

2.5.15 The software architecture discipline

Software architecture: perspectives on an emerging discipline

In [Shaw and Garlan 96] we examine architectures for software systems as well as better ways to
support software development. We attempt to bring together the useful abstractions of system
design and the notations and tools of the software developer, and look at patterns used for system
organization.

This book presents an introduction to the field of software architecture. Our purpose is to il-
lustrate the discipline and examine the ways in which architectural design can impact software

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-22 . COMPOSABLE SOFTWARE SYSTEMS

design. Our selection emphasizes informal descriptions, touching lightly on formal notations
and specifications and on tools to support them.

Our book provides a suitable text for a course on software system architectures. It brings
together the emerging models for software architectures and shows how to approach systems
from an architectural point of view.

2.6 Formal methods

Our accomplishments in the area of formal methods fall into three categories: structuring Z
specifications, formal specification of concurrent systems, and specification matching of
software components.

2.6.1 Structuring Z specifications with views

In [Jackson 95a] we explain an approach to specification structuring that gives a better separa-
tion of concerns than conventional approaches. We explain the notion of "views," give examples
of views and their composition, articulate the language features that view structuring relies upon,
and suggest some open research problems in language design and specification methodology.

2.6.2 Formal specification of concurrent systems

In [Chadha et al. 95] we present a formal methodology for developing concurrent systems. We
extend the Larch family of specification languages and tools with the CCS process algebra to
support the specification and verification of concurrent systems. We present and follow a refine-
ment strategy that relates an implementation in a programming language to a formal specifica-
tion of such a system. We illustrate our methodology on an example that uses the preconditioned
conjugate gradient method for solving a linear system of equations.

2.6.3 Specification matching of software components

Specification matching is a way to compare two software components. In the context of
software reuse and library retrieval, it can help determine whether one component can be sub-
stituted for another or how one can be modified to fit the requirements of the other. In the
context of object-oriented programming, it can help determine when one type is a behavioral
subtype of another. In the context of system interoperability, it can help determine whether the
interfaces of two components mismatch.

In [Zaremski and Wing 95] we use formal specifications to describe the behavior of software
components and, hence, to determine whether two components match. We give precise defini-
tions of exact match and, more relevantly, various flavors of relaxed match. These definitions
capture the notions of generalization, specialization, substitutability, subtyping, and inter-
operability of software components.

We write our formal specifications of components in terms of pre- and post-condition predicates.
Thus, we rely on theorem proving to determine match and mismatch. We give examples from
our implementation of specification matching using the Larch Prover.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-23

This work describes a part of the larger body of research done by Amy Zaremski, a PhD can-
didate in the School of Computer Science, in her thesis [Zaremski 96]. That work defines the
foundations for signature and specification matching. It defines matching in a general, extensible
framework; how matching can be applied to the problems of retrieval from libraries, indexing
libraries, and reuse of components; and provides implementations that demonstrate the feasibility
of the approach and illustrate the usefulness of the applications with results from a moderately-
sized component library.

In [Zaremski and Wing 97a] we use formal specifications to describe the behavior of software
components, and hence, to determine whether two components match. We give precise defini-
tions of not just exact match, but more relevantly, various flavors of relaxed match. These defini-
tions capture the notions of generalization, specialization, and substitutability of software com-
ponents.

Since our formal specifications are pre- and post-conditions written as predicates in first-order
logic, we rely on theorem proving to determine match and mismatch. We give examples from
our implementation of specification matching using the Larch Prover.

2.6.4 Protective interface specifications _

The interface specification of a procedure describes the procedure’s behavior using pre- and
postconditions. These pre- and postconditions are written using various functions. If some of
these functions are partial, or underspecified, then the procedure specification may not be well-
defined.

In [Leavens and Wing 97] we show how to write pre- and postcondition specifications that avoid
such problems, by having the precondition "protect” the postcondition from the effects of par-
tiality and underspecification. We formalize the notion of protection from partiality in the con-
text of specification languages like VDM-SL and COLD-K. We also formalize the notion of
protection from underspecification for the Larch family of specification languages, and (for
Larch) show how one can prove that a procedure specification is protected from the effects of
underspecification.

2.6.5 Formal methods: state of the art and future directions

In [Clarke 96] we survey recent progress in the development of mathematical techniques for
specifying and verifying complex hardware and software systems. Many of these techniques are
capable of handling industrial-sized examples; in fact, in some cases these techniques are already
being used on a regular basis in industry. Success in formal specification can be attributed to
notations that are accessible to system designers and to new methodologies for applying these
notations effectively. Success in verification can be attributed to the development of new tools
such as more powerful theorem provers and model checkers than were previously available.
Finally, we suggest some general research directions that we believe are likely to lead to tech-
nological advances. Although it is difficuit to predict where the future advances will come from,
optimism about the next generation of formal methods is justified in view of the progress during
the past decade. Such progress, however, will depend heavily on continued support for basic
research on new specification languages and new verification techniques.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-24 COMPOSABLE SOFTWARE SYSTEMS

2.6.6 Hints to specifiers

In [Wing 96] we present a list of hints for writing specifications. We address high-level issues
like learning to abstract and low-level issues like getting the details of logical expressions right.
This work should be of interest not only to students of formal methods but also to their teachers.

A major goal of software engineering is to enable developers to construct systems that operate
reliably despite increasing complexity. One way of achieving this goal is by using formal
methods, which are mathematically-based languages, techniques, and tools for specifying and
verifying such systems. In this area, the composable systems group has been doing research in a
number of different areas. First, we are using formal specifications to describe the behavior of
software components to determine if two components match, or if one is a behavioral subtype of
another. Second, we are investigating lightweight approaches to formal methods to make
analysis of specifications economically feasible. A lightweight approach, which emphasizes par-
tiality and focused application, can bring some of the benefits of formal methods to bear at
reduced cost. Lastly, we are doing research in underspecification. Specifically, we illustrate
techniques for ensuring that implementations do not become dependent on parts of specifications
that are intentionally underspecified. The composable systems group also compiled a report on
the state of the art of formal methods and their future directions.

2.6.7 Specification matching of software components

Specification matching is a way to compare two software components based on descriptions of
the components’ behaviors. In the context of software reuse and library retrieval, it can help
determine whether one component can be substituted for another or how one can be modified to
fit the requirements of the other. In the context of object-oriented programming, it can help
determine when one type is a behavioral subtype of another.

2.6.8 Lightweight formal methods

For everyday software development, the purpose of formalization is to reduce the risk of serious
specification and design errors. Analysis can expose such errors while they are still cheap to fix.
Formal methods can provide limited guarantees of correctness too, but, except in safety-critical
work, the cost of full verification is prohibitive and early detection of errors is a more realistic
goal.

To make analysis economically feasible, the cost of specification must be dramatically reduced,
and the analysis itself must be automated. Experience (of several decades) with interactive
theorem proving has shown that the cost of proof is usually an order of magnitude greater than
the cost of specification. And yet the cost of specification alone is often beyond a project’s
budget. Industry will have no reason to adopt formal methods until the benefits of formalization
can be obtained immediately, with an analysis that does not require further massive investment.

Existing formal methods, at least if used in the conventional manner, cannot achieve these goals.
By promoting full formalization in very expressive languages, they have guaranteed that the
benefits of formalization are spread very thin. A lightweight approach, which, in contrast, em-
phasizes partiality and focused application, can bring greater benefits at reduced cost. In

[Jackson and Wing 96] we present the elements of a lightweight approach to the use of formal
methods.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-25

A lightweight approach, in comparison to the traditional approach, lacks power of expression
and breadth of coverage. A surgical laser likewise produces less power and poorer coverage than
a common light bulb, but it makes more efficient use of the energy it consumes, and its effect is
more dramatic.

2.6.9 Formal methods: state of the art and future directions

Hardware and software systems will inevitably grow in scale and functionality. Because of this
increase in complexity, the likelihood of subtle errors is much greater. Moreover, some of these
errors may cause catastrophic loss of money, time, or even human life. While the use of formal
methods does not a priori guarantee correctness, they can greatly increase our understanding of a
system by revealing inconsistencies, ambiguities, and incompletenesses that might otherwise go
undetected.

In [Clarke 96] we assess the state of the art in specification and verification. For verification, we
highlight advances in model checking and theorem proving. In the three sections on specifica-
tion, model checking, and theorem proving, we explain what we mean by the general technique
and briefly describe some successful case studies and well-known tools. We outline future direc-
tions in fundamental concepts, new methods and tools, integration of methods, and education

and technology transfer. We close with summary remarks and pointers to resources for more
information.

2.6.10 Protection from the underspecified ‘
Underspecification is a good way to deal with partial functions in specification and reasoning.
However, when underspecification is used, implementations may unintentionally be forced to
depend on parts of the specification that were supposed to be underspecified. In [Leavens and
Wing 96] we show how to write pre- and post-condition specifications that avoid such problems,
by having the precondition "protect” the postcondition from the effects of underspecification.
This approach is most practical if the specification of mathematical vocabulary is separated from
the specification of implementation behavior, as in Larch, because it gives the specifier a chance
to think about protection separately from the specification of mathematical behavior. We for-
malize the notion of protective procedure specifications, and show how to prove that a specifica-
tion is protective. We also extend the Larch Shared Language to allow specification of what is
intentionally left underspecified, permitting enhanced debugging of such specifications.

2.7 Tractable software analysis

Our accomplishments in the area of software analysis fall into four categories: model checking
of software systems using SMV, Nitpick, and FDR (Failure-Divergence-Refinement), and
analysis of software systems.

Our research in software analysis later evolved to include: new analysis mechanisms, analysis
and model checking case studies, a new approach to verifying properties of security protocols
called "theory checking," and a new method (and tool, called Lackwit) for computing represen-
tation sharing in a program.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-26 COMPOSABLE SOFTWARE SYSTEMS

2.7.1 Formalizing the uni-processor simplex architecture

Simplex is a software architecture developed by the Software Engineering Institute for depend-
able and evolvable process-control systems. In [Rivera and Danylyszyn 95] we describe our
work which consisted of creating a formal specification of the Simplex architecture and analyz-
ing its safety and liveness properties.

We developed a CSP model to describe the overall dynamic behavior of the Simplex architec-
ture. We then verified the model using the Failure-Divergence-Refinement (FDR) model
checker.

We also developed a Wright specification of this architecture to characterize precisely the con-
nections between its components at the architectural level. The specification was based on the
latest version of the CSP model.

2.7.2 Analysis and model checking case studies

The following works describe the Nitpick specification checker, the NP specification language,
three reduction mechanisms employed in the checker to reduce the search space of a problem
(and thereby speed up the checking, allowing for the checking of much larger specifications),
and a case study in using the checker on a real system.

Nitpick release

This year we have developed a new technology for automatic analysis of software specifications.
We have shown that the checking and simulated execution of specifications written in conven-
tional software specification languages such as Z can be reduced to the problem of generating
finite models of a relational formula.

We built the Nitpick Checker, a model generator for a subset of Z called NP. The NP language is
designed to tradeoff expressiveness against tractability; it retains the most powerful specification
constructs of Z, eliminates some features that may hinder analysis, and incorporates the struc-
turing mechanisms of Z (the schema calculus) in a simplified and improved form.

The checker employs three reduction mechanisms (explained in our papers, see below) that are
capable of reducing the search for models by huge factors. We are able to analyze spaces of up to
1023 cases, for example, by reduction to a couple of million.

A beta version of the Nitpick Checker has been released and is currently being used in a masters’
level software engineering course on software analysis.

Nitpick: A checkable specification language
[Jackson 96a] outlines the design rationale behind the NP specification language.

In [Damon 96] we explain the short-circuiting mechanism of Nitpick, a method for reducing the
search for models by pruning the search. A model is constructed incrementally; by showing that
no extension of a partial model can be a satisfying model, huge search reductions can be ob-
tained. Short-circuiting shows great promise: It gives larger reductions the more complex the
property being checked, and has no time or space overhead except in preprocessing.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-27

[Jackson 96b] explains the isomorph reduction mechanism. Nitpick exploits both the structure
of the specification being checked and the structure of the elements of the models to reduce the
search for models. By avoiding generating isomorphs, reductions of 103 are easily obtained; as
the size of the models to be generated increases, the isomorph reduction increases exponentially.

Nitpick’s derived variable reduction is explained in [Jackson 95b]. By static analysis, Nitpick
can discover constructiveness in the specification of an operation, allowing the value of a vari-
able of the post-state to be derived directly from a value of a variable in the pre-state, eliminating
the need for independent search. Often half the variables in a specification can be eliminated in
this fashion.

Analyzing a software design feature with a counterexample detector

In [Jackson 96¢] we present a case study that applies Nitpick to a small but realistic specifica-
tion. We characterize the behavior of the paragraph style mechanism in Microsoft Word, and
show, by the generation of a series of models refuting expected properties, that the mechanism is
fundamentally flawed.

We illustrate the application of a checking tool to the design of a style mechanism for a word
processor. The design is cast, along with some expected properties, in a subset of Z that cor-
responds to the relational calculus. The tool evaluates a property by enumerating all possible
cases within some finite bounds, displaying as a counterexample the first case for which the
property fails to hold. Unlike animation or execution tools, our checker does not require state
transitions to be expressed constructively, and unlike theorem provers, operates completely
automatically without user intervention. Using a variety of reduetion mechanisms, it can cover
an enormous number of cases in a reasonable time, so that quite subtle flaws can be rapidly
detected.

Automatic analysis of architectural style

In [Jackson 96d] we present a case study application of Nitpick to architectural styles. We show
how Nitpick can expose a variety of undesirable properties that might arise in instances of an
architectural style. Several variants of implicit invocation systems (originally formalized by Gar-
lan and Notkin) are analyzed; the checker generated particular architectures that satisfy the style
rules but may still exhibit bad behaviors, such as races and cycles.

2.7.3 Model checking software systems: A case study

Model checking is a proven technology for verifying hardware. It works, however, only on
finite state machines, and most software systems have infinitely many states. Our approach to
applying model checking to software hinges on identifying appropriate abstractions that exploit
the nature of both the system, S, and the property, @, to be verified. We check @ on an
abstracted, but finite, model of S.

Following this approach we verified three cache-coherence protocols used in distributed file
systems [Wing and Vaziri-Farahani 95]. These protocols must satisfy the following property:
“‘If a client believes that a cached file is valid, then the authorized server believes that the
client’s copy is valid.”” In our finite model of the system, we need only represent the *‘beliefs’’
that a client and a server have about a cached file; we can abstract from the caches, the files’
contents, and even the files themselves. Moreover, by successive application of the generaliza-

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-28 COMPOSABLE SOFTWARE SYSTEMS

tion rule from predicate logic, we need only consider a model with, at most, two clients, one
server, and one file. We used McMillan’s SMV model checker: On our most complicated
protocol, SMV took less than 1 second to check over 43,600 reachable states.

We also include a description of the verification of the Coda protocol in a more complete version
of the work [Wing and Vaziri-Farahani 96].

Model checking electronic commerce protocols

In [Heintze et al. 96] we develop model checking techniques to examine NetBill and Digicash.
We show how model checking can find atomicity problems by analyzing simplified versions of
these protocols that retain crucial security problems. For our analysis we used the FDR model
checker.

Additional Nitpick developments

We developed a new symmetry reduction method for our Nitpick specification checker. In the
summer of 1996, we began work on a simpler proof of soundness of our existing method; while
working on the proof, we found a way to improve the algorithm. The new algorithm was incor-
porated into the Nitpick tool in the fall of 1997; it is not only cleaner but also performs sig-
nificantly better.

We have been researching new boolean-based specification checking and bounded generation
techniques for our Nitpick tool. Nitpick checks properties of software specifications by exhaus-
tive enumeration of states. For complex states involving many relations, functions and sets, the
state space is vast. The current Nitpick tool employs a variety of mechanisms to reduce the
space. The first is symmetry reduction; it avoids considering a state that is symmetrical to one
already analyzed. The second is short circuiting; it avoids enumerating the values of a particular
state variable when it can be determined, from the values of other variables already assigned, that
the property will be satisfied however the state assignment is completed. Together, these have
enabled us to check some complex specifications, but the method is still very sensitive to the
number of variables. Short circuiting essentially provides a weak form of goal-directedness.
Values of variables are considered in their entirety - that is, a whole function, or a whole set. If it
were possible to consider partial values, the goal-directedness could be much improved. We have
started to work on a new checking engine that considers the arcs of a function or relation one at a
time, so that the search has a finer granularity. Our scheme involves translating the relational
specification into a boolean formula and applying satisfiability algorithms. It builds on our pre-
vious work, and exploits some of the ideas from our symmetry work. We have also been work-
ing on a scheme that improves the explicit search method. "Bounded generation" allows only the
values of a relation to be generated that are known in advance to satisfy a constraint. For ex-
ample, given a constraint that p is a sub-relation of q, and given that q has already been
generated, the generation of p can be limited to sub-relations of q. A prototype implementation
of bounded generation has been constructed, and appears to result in considerable speedup for a
variety of specifications.

We used Nitpick to verify two properties of the Mobile IPv6 protocol (adopted as an IETF stan-
dard). The properties we checked are that the cache entries of mobile hosts do not form a cycle
(so packets never travel in a loop) and that authenticated messages do not form a cycle. We
found an error in the Mobile IPv6 protocol specification where a cycle, involving just two hosts,

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-29

could be created. We informed one of the designers of the problem, since IPv4 does not have the
same error. We also found that a feature that was originally included as a performance optumza—
tion was necessary for the correctness of the protocol

2.7.4 Theory checking

Fast, automatic checking of security protocols

Protocols in electronic commerce and other security-sensitive applications require careful
reasoning to demonstrate their robustness against attacks. Several logics have been developed for
doing this reasoning formally, but protocol designers usually do the proofs by hand, a process
which is time-consuming and error-prone.

In [Kindred 96) we present a new approach, theory checking, to analyzing and verifying proper-
ties of security protocols. In this approach we generate the entire finite theory, Tn, of a logic for
reasoning about a security protocol; determining whether it satisfies a property, T, is thus a
simple membership test: Tt in Tny. Our approach relies on (1) modeling a finite instance of a
protocol in the way that the security community naturally, though informally, presents a security
protocol, and (2) placing restrictions on a logic’s rules of inference to guarantee that our algo-
rithm terminates, generating a finite theory. A novel benefit to our approach is that because of
these restrictions we can provide an automatic theory-checker generator. We applied our ap-
proach and our theory-checker generator to three different logics for reasoning about authen-
tication and electronic commerce protocols: the Burrows-Abadi-Needham logic of authentica-
tion, AUTLOG, and Kailar’s accountability logic. For each, we verified the desired properties
using specialized theory checkers; most checks took less than two minutes, the longest less than
fifteen minutes.

2.7.5 Program understanding

A program-understanding tool based on type inference

Many questions that arise in reverse engineering or restructuring a program can be answered by
determining, statically, where the structure of the program requires sets of variables to share a
common representation. With this information we can find abstract data types, detect abstraction
violations, identify unused variables, functions, and fields of data structures, detect simple errors
of operations on abstract data types (such as failure to close after open), and locate sites of pos-
sible references to a value.

We have developed a method for computing representation sharing by using types to encode
representations. We use polymorphic type inference to compute new types for all variables,
eliminating cases of incidental type sharing where the variables might have different represen-
tations. The method is fully automatic and smoothly integrates pointer aliasing and higher-order
functions. Because it is fully modular and computationally inexpensive, it should scale to very
large systems.

In [O’Callahan 97} we report on our progress with the Lackwit tool. It now has a coherent for-
mal foundation in terms of type theory and is proving remarkably effective in the analysis of
large C programs. It gives information of a depth that is unprecedented in tools that can handle

SOFTWARE SCIENCES AND ENGINEERING RESEARCH : FINAL REPORT 1993-1999

2-30 COMPOSABLE SOFTWARE SYSTEMS

systems of more than a few thousand lines of code, and it smoothly incorporates troublesome
language features such as aliasing and higher-order functions. We are now applying Lackwit to
the entire Linux operating system, and it appears that it will scale effectively to over 100K lines
of code, producing accurate and useful results that could not be obtained by other tools. The
results of an analysis provided by Lackwit can help to answer questions arising from reverse
engineering or restructuring of code in programs.

2.7.6 Analysis of software systems

The following works describe new techniques for analyzing software systems. The first
describes an alternative to program slicing for extracting data flow information at the system
level. The second one describes a technique for decomposing problems into fragments that have
conventional solutions.

Detecting shared representations using type inference

In [O’Callahan 95] we explain a new approach we are investigating to analyze large systems. By
applying type inference techniques (of the sort used in the checking of expressions in the func-
tional language ML) to C programs, we are able to extract data flow information at the system
level far more cheaply than by existing techniques, while considering aliasing and pointer struc-
tures.

We are now beginning to develop a prototype reverse engineering tool embodying these ideas.

Problem decomposition for reuse

In [Jackson and Jackson 96] we apply view structuring to a model problem in software specifica-
tion. We show how views can help decompose the problem into fragments that are amenable to
rote solutions, because they correspond to the components of "problem frames," elements of
problems that are well understood and have conventional and straightforward solutions.

2.7.7 New analysis mechanisms

Efficient search as a means of executing specifications

In [Damon 96] we explain the short-circuiting mechanism of Nitpick, a method for reducing the
search for models by pruning the search. A model is constructed incrementally; by showing that
no extension of a partial model can be a satisfying model, huge search reductions can be ob-
tained. Short-circuiting shows great promise: it gives larger reductions the more complex the
property being checked, and has no time or space overhead except in preprocessing.

Checking relational specifications with binary decision diagrams

Checking a specification in a language based on sets and relations (such as Z) can be reduced to
the problem of finding satisfying assignments, or models, of a relational formula. In [Damon,
Jackson, and Jha 96] we present a new method for finding models using ordered binary decision
diagrams (BDDs). This method appears to scale better than existing methods.

Relational terms are replaced by matrices of Boolean formulae. These formulae are then com-
posed to give a Boolean translation of the entire relational formula. Throughout, Boolean for-

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-31

mulae are represented with BDDs; from the resulting BDD, models are easily extracted. The
performance of the BDD method is compared to our previous method based instead on explicit
enumeration. The new method performs as well or better on most of our examples, but can also
handle specifications that, until now, we have been unable to analyze.

Isomorph-free model enumeration: a new method for checking relational

specifications

In [Jackson 97] we report a new algorithm for checking abstract software specifications. It is an
advance on our previous work [Jackson 96b], being both simpler to explain and implement as
well as more powerful — that is, resulting in a more efficient search. The algorithm has been
implemented in the latest version of the Nitpick specification checker.

Checking relational specifications with binary decision diagrams

[Damon, Jackson, and Jha 96] reports an experiment in using boolean techniques in the engine
at the heart of the Nitpick checker, in contrast to the techniques based on isomorph elimination,
on which we have concentrated primarily. We used Bryant’s ordered binary decision diagrams
and were able to analyze specifications that we were previously unable to analyze. We plan to
pursue this work more generally by looking at boolean satisfaction algorithms as a tool for
specification checking.

2.7.8 Software engineering

Lessons on converting batch systems to support interaction
Software often evolves from batch to interactive use. Because these two usage styles are so
different, batch systems usually require substantial changes to support interactive use. In
[DeLine et al. 97] we enumerate specific issues that arise during such a conversion. These is-
sues include assumptions about system execution duration, incremental and partial processing,
scope of processing, unordered and repeated processing, and error handling. We discuss how
addressing these issues affects the implementation in the areas of memory management, assump-
tions and invariants, computational organization, and error handling. We use as a working ex-
ample our conversion of the batch processor for the UniCon architecture description language
into an interactive architecture editor. To capture the lessons for practitioners undertaking this
type of conversion, we summarize with a checklist of design and implementation considerations.

Scalable object oriented techniques for information integration in heterogeneous
information systems :

Many applications require information produced by outside parties; however, information from
collections such as the World Wide Web is diverse enough in form to make information integra-
tion difficult. The object-oriented model gives a standard interface for access to information, but
most OO systems can only manipulate objects specially created for that system.

A well-designed object model, backed up by a network of mediator agents, can apply object-
oriented abstractions to a wide range of data, including Web documents. This encapsulation
allows programs to exploit the structure of data types on the Web, including unfamiliar data

types, and also to extend the types scalably.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-32 COMPOSABLE SOFTWARE SYSTEMS

2.8 Other research

The following sections summarize research in Composable Software Systems performed by two
PhD candidates.

2.8.1 Safe and efficient persistent heaps

Object-oriented databases, persistent programming languages and distributed object servers are
just some of the systems that require support for making arbitrary types of data persistent. Per-
sistent heaps are essential components of such systems. The data stored in persistent heaps are
valuable and hard to recreate, so it is crucial that this data be protected from both machine
failures and programmer errors. This safety requirement may conflict with the need to provide
high-throughput, low-latency access to the data, leading to a sacrifice of safety for performance.

In [Nettles 95] we discuss the design, implementation and performance evaluation of the first
system that avoids the need to sacrifice safety for performance in persistent heaps.

The design uses an approach based on transactions and garbage collection to provide safe
management of persistent data. Good performance is achieved by combining traditional systems
techniques for transactions with a novel concurrent garbage collection technique, "replicating
collection."”

The implementation is the first to provide concurrent collection of a transactional heap.
Replicating collection allows a much simpler implementation than previous (unimplemented)
designs based on earlier concurrent collection techniques. The implementation is an extension of
the runtime system of Standard ML of New Jersey.

2.8.2 Language support for mobile agents

Mobile agents are code-containing objects that may be transmitted between communicating par-
ticipants in a distributed system. As opposed to systems that only allow the exchange of non-
executable data, systems incorporating mobile agents can achieve significant gains in perfor-
mance and functionality.

A programming language for mobile agents must be able to express their construction, trans-
mission receipt, and subsequent execution. Its implementation must handle architectural
heterogeneity between communicating machines and provide sufficient performance for applica-
tions based on agents. In addition to these essential properties, an agent language may support
desirable properties such as high-level abstractions for code manipulation and the ability to ac-
cess resources on remote execution sites. In [Knabe 95] we describe our language support for
mobile agents.

We designed and implemented an agent-programming language that satisfies the essential
properties and a number of desirable ones. A key feature of our language is the use of strong
static typing for remote resource access. Agents may be linked dynamically to resources on
remote sites, and this linking is always guaranteed to be type safe. We provide this guarantee -
without requiring that all components of an agent-based system be compiled together.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-33

2.9 Bibliography

[Abowd 96]
Abowd, G., Allen, R., and Garlan, D.
Formalizing Style to Understand Descriptions of Software Architecture.
ACM Transactions on Software Engineering and Methodology, 1996.

[Abowd et al. 93]
Abowd, G., R. Allen, and D. Garlan.
Using style to give meaning to software architecture.
In Proceedings of SIGSOFT’93: Foundations of Software Engineering. December, 1993.

[Abowd et al. 95]
Abowd, G., R. Allen, and D. Garlan.
Formalizing Architectural Style.
IEEE Transactions on Software Engineering and Methodology, 1995.

[Allen 96a]
Allen, R. and Garlan, D.
A Case Study in Architectural Modelling: The AEGIS System.
In Proceedings of the Eighth International Workshop on Software Specification and Design
(IWSSD-8). Paderborn, Germany, March, 1996.

[Allen 96b]
Allen, R.
HLA: A Standards Effort as Architectural Style.
In Proceedings of the Second International Software Architecture Workshop. Second Inter-
national Software Architecture Workshop, ACM Press, San Francisco, CA, October, 1996.

[Allen 97]
Allen, R.
A Formal Approach to Software Architecture.
PhD thesis, School of Computer Science, Carnegie Mellon University, May, 1997.
Available as technical report CMU-CS-97-144.

[Allen and Garlan 94a]
Allen, R. and D. Garlan.
Formalizing architectural connection.
In Proceedings of the Sixteenth International Conference on Software Engineering. 1CSE,
May, 1994.

[Allen and Garlan 94b]
Allen, R. and D. Garlan.
Beyond definition/use: architectural interconnection.
In Proceedings of the ACM Workshop on Interface Definition Languages. ACM, January,
1994.

[Allen and Garlan 94c]
Allen, R. and D. Garlan.
A formal basis for architectural connection.
ACM Transactions on Software Engineering and Methodology, 1994.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-34 . COMPOSABLE SOFTWARE SYSTEMS

[Allen and Garlan 97a]
Allen, R. and D. Garlan.
Formal Modeling and Analysis of the HLA RTIL.
In Proceedings of the 1997 Spring Simulation Interoperability Workshop. March, 1997.

[Allen and Garlan 97b]
Allen, R. and D. Garlan.
A Formal Basis for Architectural Connection.
Transactions on Software Engineering and Methodology, July, 1997.
To appear. "

[Brown 97}
Brown, R.D.
Automated Dictionary Extraction for ‘‘Knowledge-Free’’ Example-Based Translation.
In Proceedings of the Seventh International Conference on Theoretical and Methodological
Issues in Machine Translation. July, 1997.
Santa Fe, NM.

An Example-Based Machine Translation system is supplied with a sentence-aligned
bilingual corpus, but no other knowledge sources. Using the knowledge implicit in the cor-
pus, it generates a bilingual word-for-word dictionary for alignment during translation.
With such an automatically-generated dictionary, the system covers (with equivalent
quality) more of its input on unseen texts than the same system does when provided with a
manually-created general-purpose dictionary and other knowledge sources.

[Chadha et al. 94]
Chadha, H.S., J.W. Baugh, Jr. and JM. Wing.
Formal specification of AEC product models.
In Computing in Civil Engineering: Proceedings of the First Congress. ASCE, June, 1994.

[Chadha et al. 95]
Chadha, H.S., Baugh, J.W, Jr., and Wing, J.M.
Formal Specification of Concurrent Systems.
Engineering with Computers, September, 1995.
Submitted.

[Clarke 96]
Clarke, E.M., Wing, J. M.
Formal Methods: State of the Art and Future Directions.
In ACM Computing Surveys. December, 1996.
Also in Draft report of the Formal Methods Working Group, ACM Workshop on Strategic
Directions in Computing Research, Aug, 1996; and available as Carnegie Mellon Univer-
sity technical report CMU-CS-96-178.

[Clarke and Wing 96]
Clarke, E.M. and J. Wing.
Formal Methods: State of the Art and Future Directions.
ACM Computing Surveys28(4):626-643, December, 1996.

[Clements 96]
Clements, P., Shaw, M. '
Toward Boxology: Preliminary Classification of Architectural Styles.

In Proceedings of the Second International Software Architecture Workshop. ISAW, October,
1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-35

[Damon 96]
Damon, C.A. and Jackson, D.
Efficient Search as a Means of Executing Specifications.
In Proceedings of the Conference on Tools for Construction and Analysis of Software. March,
1996.

[Damon, Jackson, and Jha 96]
Damon, C., D. Jackson, and S. Jha.
Checking Relational Specifications with Binary Decision Diagrams.
In Proceedings of the 4" ACM SIGSOFT Conference on Foundations of Software Engineering,
pages 70-80. ACM, October, 1996.
San Francisco.

[DeLine 96]
DeLine, R.
Toward User-Defined Element Types and Architectural Styles.
In Proceedings of the Second International Software Architectire Workshop. ISAW, ACM
Press, San Francisco, CA, October, 1996. '

[DeLine et al. 97]
DeLine, R., Shaw, M., Zelesnik, G.
Lessons on Converting Batch Systems to Support Interaction.
In Proceedings of the Eighteenth International Conference on Software Engineering. 1997
ICSE, May, 1997.
To appear.

[DeLine, Zelesnik, and Shaw 97]
DelLine, R., G. Zelesnik, and M. Shaw.
Lessons on Converting Batch Systems to Support Interaction.
In Proceedings of the 1 8" International Conference on Software Engineering, pages 195-204.
May, 1997.

[Dingel 97]
Dingel, J., Garlan, D, Jha, S., Notkin, D.
Towards a Formal Treatment of Implicit Invocation.
January, 1997.
Submitted.

[Garlan 94]
Garlan, D.
Using refinement to understand architectural connection.
In Proceedings of the Sixth Refinement Workshop. January, 1994.

[Garlan 95a]
Garlan, D.
Research Directions in Software Architecture.
ACM Computing Surveys27(2), June, 1995.

[Garlan 95b]
Garlan, D.
What is style?
In Proceedings of the First International Workshop on Software Architecture. April, 1995.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-36 COMPOSABLE SOFTWARE SYSTEMS

[Garlan 95c¢]
Garlan, D., Allen, R., and Ockerbloom, J.
Architectural Mismatch: Why Reuse is So Hard.
IEEE Softwarel2(6):17-28, November, 1995.

{Garlan 95d]
Garlan, D.
First International Workshop on Architectures for Software Systems: Workshop Summary.
ACM Software Engineering Notes:84-89, July, 1995.

[Garlan 96a]
Garlan, D.
Style-Based Refinement for Software Architecture.
In Proceedings of the Second International Software Architecture Workshop. ISAW, ACM
Press, San Francisco, CA, October, 1996.

[Garlan 96b]
Garlan, D.
Style-Based Refinement for Software Architecture.

In Proceedings of the Second International Software Architecture Workshop (ISAW2). Oc-
tober, 1996.

[Garlan 97a]
Garlan, D., Monroe, R.T., and Wile, D.
ACME: An Architecture Description Interchange Language.
January, 1997.
Submitted.

[Garlan 97b]
Allen, R., Garlan, D.
Formal Modeling and Analysis of the HLA RTI.
In Spring Simulation Interoperability Workshop, Orlando, FL. SIW, March, 1997.
To appear.

[Garlan and Delisle 95a]
Garlan, D. and N. Delisle.
Formal Specification of an Architecture for a Family of Instrumentation Systems.
Applications of Formal Methods.
In Hinchey and Bowen,
Prentice Hall, International Series in Computer Science, 1995.

[Garlan and Delisle 95b]
Garlan, D. and Delisle, N. _
Formal Specification of an Architecture for a Family of Instrumentation Systems.
In Michael G. Hinchey and Jonathan P. Bowen (editor), Applications of Formal Methods,
chapter 4. Prentice Hall, International Series in Computer Science, Hemel Hempstead,
1995.

[Garlan and Perry 95a]
Garlan, D. and D. Perry.
Introduction to the Special Issue on Software Architecture.
IEEE Transactions on Sofitware Engineering and Methodology21(4), 1995.

FINAL REPORT 1993-1999 " SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-37

[Garlan and Perry 95b]
Garlan, D. and D. Perry.
Software Architecture: Practice, Potential, and Pitfalls.
In Proceedings of the Sixteenth International Conference on Software Engineering. 1CSE,
May, 1995.

[Garlan and Shaw 94a]
Garlan, D. and M. Shaw.
Software development assignments for a software architecture course.
In Proceedings of the Sixteenth International Conference on Software Engineering. 1CSE,
May, 1994.

[Garlan and Shaw 94b]
Garlan, D. and M. Shaw.
Programming exercises for software architecture.
In ICSE-16 workshop on software engineering education. 1994.

[Garlan and Shaw 94c]
Garlan, D. and M. Shaw.
An introduction to software architecture.
Advances in Software Engineering and Knowledge Engineering, Volume 1.
World Scientific Publishing Company, 1994.

[Garlan et al. 94a]
Garlan, D., M. Shaw, and J. Galmes.
Experience with a course on architectures for software systems, part II: educational
materials.
Technical Report CMU-CS-94-178, Computer Science Department, Carnegie Mellon Univer-
sity,
December, 1994.

[Garlan et al. 94b]
Garlan, D., R. Allen, and J. Ockerbloom.
Exploiting style in architectural design environments.
In Proceedings of Second ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM, December, 1994.

[Garlan et al. 95]
Garlan, D, R. Allen, and J. Ockerbloom.
Architectural mismatch, or, why it’s hard to build systems out of existing parts.
In Proceedings of the 17th International Conference on Software Engineering. 1CSE, April,
1995.

[Haines et al. 94]
Haines, N., D. Kindred, J.G. Morrisett, S.M. Nettles, and J.M. Wing.
Composing first-class transactions.
ACM Transactions on Programming Languages and Systems, Short Communications, Novem-
ber, 1994.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-38 COMPOSABLE SOFTWARE SYSTEMS

[Heintze et al. 96]
N. Heintze, N., D. Tygar, J. Wing, H.C. Wong.
Model Checking Electronic Commerce Protocols.
In Proceedings of the USENIX 1996 Workshop on Electronic Commerce, pages 147-164.
November, 1996.
Oakland, CA.

[Horn 93]
Horn, B.
Constrained objects.
PhD thesis, Computer Science Department, Carnegie Mellon University, November, 1993.
Appears as technical report CMU-CS-93-154.

[Jackson 94a]
Jackson, D.
Abstract model checking of infinite specifications.

In Proceedings of Conference on Industrial Benefit of Formal Methods Europe. October,
1994.

[Jackson 94b]
Jackson, D.
Exploiting Symmetry in the Model Checking of Relational Specifications.
Technical Report CMU-CS-94-219, Computer Science Department, Carnegie Mellon Univer-
sity,
December, 1994.

[Jackson 94c¢]
Jackson, D.
Aspect: detecting bugs with abstract dependences.
In Transactions on Software Engineering and Methodology. ACM, 1994.

[Jackson 95a)
Jackson, D.
Structuring Z Specifications with Views.
ACM Transactions on Software Engineering and Methodology4(4), October, 1995.
Also appeared as technical report CMU-CS-94-126.

[Jackson 95b]
Jackson, D. and Damon, C.A.
Semi-executable Specifications. ‘
Technical Report CMU-CS-95-216, Carnegie Mellon University,
November, 1995.

[Jackson 96a]
Jackson, D.
Nitpick: A checkable specification language.
In Proceedings of the Workshop on Formal Methods in Software Practice. January, 1996.

[Jackson 96b]
Jackson, D., Jha, S., and Damon, C.A.
Faster Checking of Software Specifications by Eliminating Isomorphs.

In Proceedings of the Conference on the Principles of Programming Languages. January,
1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-39

[Jackson 96¢]
Jackson, D. and Damon, C.A.
Elements of Style: Analyzing a Software Demgn Feature with a Counterexample Detector.
In Proceedings of the International Symposium on Software Testing and Analysis. January,
1996.

[Jackson 96d]
Jackson, D.
Automatic Analysis of Architectural Style.
July, 1996.
Submitted.

[{Jackson 97]
Jackson, D., Jha, S.
Isomorph-free Model Enumeration: A New Method for Checking Relational Specifications.
January, 1997.
Submitted.

[Jackson and Jackson 96]
Jackson, D. and Jackson, M.
Problem Decomposition for Reuse.
Software Engineering Journall1(1):11-30, January, 1996.
Also available as technical report CMU-CS-95-108, January, 1995.

[Jackson and Ladd 94]
Jackson, D..and D.A. Ladd.
Semantic diff: A tool for summarizing the effects of modifications.
In Proceedings of the International Conference on Software Maintenance. September, 1994.

[Jackson and Rollins 94a]
Jackson, D. and E.J. Rollins.
Abstract program dependences for reverse engineering.
Technical Report CMU-CS-94-169, Computer Science Department, Carnegie Mellon Univer-
sity,
July, 1994.

[Jackson and Rollins 94b]
Jackson, D. and E.J. Rollins.
A new model of program dependences for reverse engineering.
In Second ACM Symposium on Foundations of Software Engineering. ACM, December
1994.

[Jackson and Rollins 94c]
Jackson, D. and E.J. Rollins.
Abstraction mechanisms for pictorial slicing.
In Proceedings of the Workshop on Program Comprehension. November, 1994.

[Jackson and Wing 96]
Jackson, D., Wing, JM.
Lightweight Formal Methods.
In IEEE Computer. IEEE, April, 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-40 COMPOSABLE SOFTWARE SYSTEMS

[Jackson, Damon, and Jha 96]
Daniel Jackson, D., C. Damon, and S. Jha.
Faster Checking of Software Specifications.
In Proceedings of the ACM Conference on Principles of Programming Languages, pages
79-90. ACM, January, 1996.
St. Petersburg Beach, FL.

[Jackson, Jha, and Damon 97]
Jackson, D., S. Jha, and C. Damon.
Isomorph-free Model Enumeration: A New Method for Checking Relational Specifications.
ACM Transactions on Programming Languages and Systems, 1997.
Accepted for publication, pending minor revisions.

[Kindred 96]
Kindred, D., Wing, J.M.
Fast, Automatic Checking of Security Protocols.
In Proceedings of the USENIX 1996 Workshop on Electronic Commerce, pages 41-52.
November, 1996.
Also available as Carnegie Mellon University technical report CMU-CS-96-173, Sep 1996.

[Kindred and Wing 96]
Kindred, D. and J. Wing.
Fast, Automatic Checking of Security Protocols.
In Proceedings of the USENIX 1996 Workshop on Electronic Commerce, pages 41-52. Novem-
ber, 1996. :
Oakland, CA.

[Knabe 95]
Knabe, F.C.
Language Support for Mobile Agents.
Technical Report CMU-CS-95-223, Camegie Mellon University,
1995.

[Leavens and Wing 96]

Leavens, G.T., Wing, .M.

Protection from the Underspecified.

Technical Report CMU-CS-96-129, Computer Science Department, Carnegie Mellon Univer-
sity,

April, 1996.

Also available as Iowa State University Department of Computer Science technical report
TR96-04.

[Leavens and Wing 97]

Leavens, G.T. and J.M. Wing.

Protective Interface Specifications.

In Proceedings of TAPSOFT’97 - Theory and Practice of Software Development, 7th Inter-
national Joint Conference CAAP/FASE, Lecture Notes in Computer Science 1214, pages
520-534. ACM SIGSOFT, April, 1997.

To appear. Also available as Technical Report CMU-CS-96-129R.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-41

[Liskov and Wing 93]
Liskov, B.H. and J.M. Wing.
Specifications and their use in defining subtypes.
In Proceedings of OOPSLA *93. OOPSLA, September, 1993.

[Liskov and Wing 94a]
Liskov, B.H. and J.M. Wing.
A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, November, 1994.

[Liskov and Wing 94b]
Liskov, B.H. and J.M. Wing.
Corrigenda to ECOOP 93 Paper.
SIGPLAN Notice29(4), 1994.

[Melton 97]
Melton, R., Garlan, D.
Architectural Unification.
January, 1997.
Submitted.

[Minamide et al. 96]
Minamide, Y., G. Morrisett, and R. Harper.
Polymorphic Closure Conversion.
In Proceedings of the 1996 Conference on Principles of Programming Languages. 1996.
An extended version of this paper will appear as a Carnegie Mellon Computer Science Depart-
ment Technical Report.

[Monroe 96a]
Monroe, R.T. and Garlan, D.
Style-based Reuse for Software Architectures.
In Proceedings of the Fourth International Conference on Software Reuse. April, 1996.

[Monroe 96b]
Monroe, R.T.
Capturing Design Expertise in Customized Software Architecture Design Environments.
In Proceedings of the Second International Software Architecture Workshop. Second Inter-
national Software Architecture Workshop, ACM Press, San Francisco, CA, October, 1996.

[Monroe 97]
Monroe, R.T., Kompanek, A., Melton, R., Garlan, D.
Architectural Styles, Design Patterns, and Objects.
In IEEE Software. IEEE, January, 1997.

[Monroe et al. 97]
Monroe, R., A. Kompanek, R. Melton, and D. Garlan.
Architectural Styles, Design Patterns, and Objects.
IEEE Software, January, 1997.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-42 COMPOSABLE SOFTWARE SYSTEMS

[Morrisett et al. 95]
Morrisett, G., M. Felleisen, and R. Harper.
Abstract Models of Memory Management.
In Proceedings of the SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming
and Computer Architecture. SIGPLAN, June, 1995.

[Mummert et al. 94]
Mummert, L.,] M. Wing, and M. Satyanarayanan.
Using belief to reason about cache coherence.
In Proceedings of the Symposium on Principles of Distributed Computing. August, 1994,
Also appears as technical report, CMU-CS-94-151.

[Nettles 95]
Nettles, S.M.
Safe and Efficient Persistent Heaps.
PhD thesis, Computer Science Department, Carnegie Mellon University, December, 1995.
Available as technical report CMU-CS-95-225.

[Notkin et al. 93]
Notkin, D., D. Garlan, W.G. Griswold, and K. Sullivan.
Adding implicit invocation to languages: three approaches.
In Proceedings of the JSSST International Symposium on Object Technologies for Advanced
Software. November, 1993.

[O’Callahan 95]
O’Callahan, R. and Jackson, D.
Detecting Shared Representations Using Type Inference.
Technical Report CMU-CS-95-202, Carnegie Mellon University,
September, 1995.

[O’Callahan 97]
O’Callahan, R., Jackson, D.
Lackwit: A Program Understanding Tool Based on Type Inference.

In Proceedings of the Eighteenth International Conference on Software Engineering. 1997
ICSE, May, 1997.

To appear.

[O’Callahan and Jackson 97]
O’Callahan, R. and D. Jackson.
Lackwit: A Program Understanding Tool Based on Type Inference.

In Proceedings of the International Conference on Software Engineering. May, 1997.
Boston.

[Ockerbloom 96]
Ockerbloom, J. :
Comprehending the Web: Scalable Object Oriented Techniques for Information Integration in

Heterogeneous Information Systems.
1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-43

[Rivera and Danylyszyn 95]
Rivera, J.G. and Danylyszyn, A.A.
Formalizing the Uni-processor Simplex Architecture.
Technical Report CMU-CS-95-224, Carnegie Mellon University,
1995.

[Shaw 94a]
Shaw, M.
Beyond objects: a software design paradigm based on process control.
Technical Report CMU-CS-94-154, Computer Science Department, Carnegie Mellon Univer-
sity,
1994. ,
Also appears as Software Engineering Institute Technical Report CMU/SE-94-TR-15.

[Shaw 94b]
Shaw, M.
Patterns for software architectures.
In Proceedings of First Annual Conference on the Pattern Languages of Programming.
August, 1994,
Also appears as a chapter in Pattern Languages of Program Design, J. Coplein and
D. Schmidt (eds.), Addison-Wesley, 1995. pp. 453-462.

[Shaw 95a]
Shaw, M.
Coping with heterogeneity in software architecture.
1995.
Unpublished position paper for Dagstuhl Workshop on Software Architecture, February 1995.

[Shaw 95b]
Shaw, M.
Architectural Issues in Software Reuse: It’s Not Just the Functionality, It’s the Packaging.
In Proceedings of the Symposium on Software Reuse, ’95. 1995.

[Shaw 95c¢]
Shaw, M.
Some Patterns for Software Architecture.
In The Second Annual Conference on Pattern Languages of Programming. September, 1995.

[Shaw 95d]
Shaw, M. and Garlan, D.
Formulations and Formalisms in Software Architecture.
In Jan van Leeuwen (editor), Lecture Notes in Computer Science: Volume 1000. Springer-
Verlag, 1995.

[Shaw 95¢]
Shaw, M.
Making Choices: A Comparison of Styles for Software Architecture.
IEEE Software, Special Issue on Software Architecture12(6):27-41, November, 1995.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-44 COMPOSABLE SOFTWARE SYSTEMS

[Shaw 96]
Shaw, M.
Truth vs Knowledge: The Difference Between What a Component Does and What We Know
It Does.
In Proceedings of the 8th International Workshop on Software Specification and Design.
March, 1996.

[Shaw and Clements 97]

Shaw, M. and P. Clements.

A Field Guide to Boxology: Preliminary Classification of Architectural Styles for Software
Systems.

In Proceedings of COMPSAC *97. 1997.

A preliminary version, ‘“Toward Boxology: Preliminary Classification of Architectural
Styles,”” also appears in Proceedings of the Second International Software Architecture
Workshop, Oct, 1996.

[Shaw and Garlan 94]
Shaw, M. and D. Garlan. ,
Characteristics of higher-level languages for software architecture.
Technical Report CMU-CS-94-210, Computer Science Department, Carnegie Mellon Univer-
sity,
December, 1994.

[Shaw and Garlan 96]
Shaw, M., Garlan, D.
Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall Publishing, Copyright 1996, 242 pp., Paper (0-13-182957-2), 1996.

[Shaw et al 96]
Shaw, M., Clements, P. ~
How Should Patterns Influence Architecture Description Languages?
July, 1996.
Response to a call for discussion among the DARPA EDCS community.

[Shaw et al. 95a]
Shaw, M., D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C. Scott, and M. Schumacher.
Candidate Model Problems in Software Architecture.
1995.
This work, previously available on paper, now exists as a weblet:
http://www .cs.cmu.edu/~ModProb/ .

[Shaw et al. 95b]
Shaw, M., R. DeLine, D.V. Klein, T.L. Ross, D. Young, and G. Zelesnik.
Abstractions for software architecture and tools to support them.
In IEEE Transactions on Software Engineering. IEEE, April, 1995.

[Shaw et al. 96]
Shaw, M., DeLine, R., and Zelesnik, G.
Abstractions and Implementations for Architectural Connections.

In Proceedings of the Third International Conference on Configurable Distributed Systems.
May, 1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

COMPOSABLE SOFTWARE SYSTEMS 2-45

[Wing 94]
Wing, J.M.
Decomposing and recomposing transactional concepts.
In Proceedings of the Workshop on Object-based Distributed Programming. Lecture Notes in
Computer Science 791, 1994.

[Wing 95a]
Wing, J. M.
Hints for Writing Specifications.
In Proceedings of the Z Users’ Meeting *95. September, 1995.

[Wing 95b]
Wing, J.M.
Teaching Mathematics to Software Engineers.
In Proceedings of the Fourth International Conference on Algebraic Methodology and
Software Technology. AMAST, July, 1995.
Also available as Technical Report CMU-CS-95-118R, May 1995.

[Wing 96]
Wing, J.M.
Educational Issues of Formal Methods.
In Hinchey, M., Dean, N.,
Academic Press, London, 1996, pages 57-77, Chapter 5, Hints to Specifiers.

[Wing 97]
Wing, J.
Subtyping for Distributed Object Stores.
In Proceedings of the Second IFIP International Workshop on Formal Methods for Open
Object-based Distributed Systems (FMOODS). IFIP, July, 1997.
Extended abstract of invited talk.

[Wing and Steere 95]
Wing, J.M. and D.C. Steere.
Specifying Weak Sets.
In Proceedings of the 15th International Conference on Distributed Computing Systems.
ICDCS, June, 1995.
Also available as Technical Report CMU-CS-94-194. October 1994.

[Wing and Vaziri-Farahani 95]
Wing, J.M. and M. Vaziri-Farahani.
Model Checking Software Systems: A Case Study.
In Proceedings of SIGSOFT Foundations of Software Engineering. SIGSOFT, March, 1995.
Also available as Technical Report CMU-CS-95-128. March 1995.

[Wing and Vaziri-Farahani 96]
Wing, J.M. and Vaziri-Farahani, M.
A Case Study in Model Checking Software Systems.
In Science of Computer Programming. September, 1996.
Also available as Carnegie Mellon University technical report CMU-CS-96-124.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

2-46 COMPOSABLE SOFTWARE SYSTEMS

[Wing and Vaziri-Farahani 97)
Wing, J. and M. Vaziri-Farahani.
A Case Study in Model Checking Software Systems.
Science of Computer Programming28:273-299, 1997.

[Zaremski 96]
Zaremski, A.
Signature and Specification Matching.
Technical Report CMU-CS-96-103, Carnegie Mellon University,
1996.

[Zaremski and Wing 94]
Zaremski, A.M. and J.M. Wing.
Signature matching, a tool for software libraries.
ACM Transactions on Software Engineering and Methodology, 1994.

[Zaremski and Wing 95]
Zaremski, A.M. and J. M. Wing.
Specification Matching of Software Components.
In Proceedings of 3rd ACM SIGSOFT Symposium on the Foundations of Software
Engineering. SIGSOFT, October, 1995.
Also available as Technical Report CMU-CS-95-127. March 1995.

[Zaremski and Wing 96]
Zaremski, A M., Wing,] M.
Specification Matching of Software Components.
In ACM Transactions on Software Engineering and Methodology. ACM, June, 1996.

[Zaremski and Wing 97a]
Zaremski, A.M., Wing, J M.
Specification Matching of Software Components.
In ACM Transactions on Software Engineering and Methodology. ACM SIGSOFT, January,
1997.
To appear.

[Zaremski and Wing 97b]
Zaremski, A. and J. Wing.
Specification Matching of Software Components.
ACM Transactions on Sofiware Engineering and Methodology, 1997.
To appear, accepted May, 1997.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES) 3-1

3. Integrated Software Architectures

Our research in Integrated Software Architectures (ISAs) has striven to unify problem solving,
planning, communication, and machine learning to produce robust, knowledge-based systems
that apply to a variety of externally-important domains. These domains might include
autonomous robotic planning, logistics/transportation planning, distributed scheduling, planning
under uncertainty, agent communication, etc. The research thrust has been primarily toward in-
creasing the power and performance of these systems to meet real-world problems. Addition-
ally, basic research into the componenent mechanisms continues, including investigations in
nonlinear, hierarchical planning, large-scale matching, reactive decision making, and
autonomous learning.

3.1 Cognitively-Oriented Task Simulation

We investigated the automated acquisition of task and domain knowledge via natural language
descriptions as processed by NL-Soar.

Research under this contract focused on three distinct areas: the development of pervasive
capabilities that can be reused by independently constructed task systems, enabling technology
for large-scale Soar systems, and support of Soar for the external community. Progress along
each direction is outlined below.

3.1.1 Pervasive capabilities for independent task systems

In [Lewis 93] we present the culmination of our previous work in producing a task-independent
model of language comprehension based on functional and psycholinguistic constraints. NL-
Soar is based on the Soar theory of cognitive architecture, which provides the underlying control
structure, memory structures, and learning mechanism. The basic principles of NL-Soar are a
result of applying these architectural mechanisms to the task of efficiently comprehending lan-
guage in real time. We present a detailed computational model that provides in-depth accounts
of structural ambiguity resolution, garden path effects, unproblematic ambiguities, parsing break-
down on difficult embeddings, unacceptable embeddings, immediacy of interpretation, and the
time course of comprehension. The model explains a variety of both modular and interactive
effects, and shows how learning can affect ambiguity resolution behavior. In addition to ac-
counting for the qualitative phenomena surrounding parsing breakdown and garden path effects,
NL-Soar explains a wide range of contrasts between garden paths and unproblematic am-
biguities, and difficult and acceptable embeddings: The theory has been applied in detail to over
100 types of structures representing these contrasts, with a success rate of about 90%. The ac-
count of real time immediacy includes predictions about the time course of comprehension and a
zero-parameter prediction about the average rate of skilled comprehension. Finally, the theory
has been successfully applied to a suggestive range of cross-linguistic examples, including con-
structions from head-final languages such as Japanese.

In addition we have essentially completed the first integration of NL-Soar with an independently
constructed task system, NTD-Soar, a model of the NASA test director [Nelson et al. 94a]. The
combined NL/NTD system includes comprehension, our preliminary language generation model
and our preliminary visual model. As our first integration it is not surprising that many un-
foreseen issues arose, changing the original NTD and NL systems to various degrees. From this

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

32 . ' INTEGRATED SOFTWARE ARCHITECTURES

effort we have extracted a version of NL-Soar’s comprehension capability to be plugged into the
next application, an independently constructed tactical fighter pilot, Tacair-Soar. Although the
generation framework will be preserved in the new integration as well (since the development of
the capability itself is preliminary), we expect the details of that portion of the system to change
significantly. It is unclear at this time whether we will attempt to integrate the visual model with
Tacair-Soar or not (the decision depends upon whether the designers of the Tacair agent feel that
modelling the visual limitations of the agent is desirable).

In [Nelson et al. 94b] we present a more detailed description of NTD-Soar than was referenced
in our previous progress report. NTD-Soar was our first integration of NL-Soar with an indepen-
dently constructed task system. NTD-Soar is a model of the perceptual, cognitive, and motor
actions performed by the NASA Test Director as he prepares for a space shuttle launch. The
model is based on a cognitive analysis of the NTD’s task as well as a number of independently-
designed, general cognitive capabilities, including language comprehension, language genera-
tion, and a preliminary model of visual attention. This paper presents a detailed description of
the model and an assessment of its performance when compared to human data. Of particular
importance is NTD-Soar’s ability to display human-like, realtime performance. The comparison
demonstrates that serial bottlenecks in symbolic models do not preclude complex behaviors that
appear to happen in parallel, simply by opportunistically interleaving small elements of the dif-
ferent subtasks.

In [Rubinoff and Lehman 94] we focus on the new language generation capability in NL-Soar
that is briefly mentioned in [Nelson et al. 94b]. In addition to discussing its deployment within
the NTD system, we also discuss its deployment in TacAir-Soar, an independently-constructed,
tactical fighter pilot built for ARPA’s IFOR program. Like the NTD application, the TacAir agent
requires language capabilities that work in a realtime environment. Responding in real time to
changing situations requires a flexible way to shift control between language and task operations.
NL-Soar’s generation subsystem provides this flexibility by organizing generation as a sequence
of incremental steps that can be interleaved with task actions as the situation requires. Despite
the fact that the overall structure of the two agents is as different as possible (given their im-
plementation within the Soar architecture), our preliminary generation capability was ported to
the new application with little modification other than the addition of task-specific, linguistic
knowledge.

Just as [Nelson et al. 94b, Rubinoff and Lehman 94] demonstrate that serial symbolic systems
can meet real-time language constraints, [Lehman 94] shows how to subsume the power of
statistical methods in coping with the computational complexity of sense resolution. Sense
resolution, or word-sense disambiguation, is one of the two major sources (the other being syn-
tactic armiguity) of exponential blowup in natural language comprehension systems. The statis-
tical basis for sense resolution decisions is achieved by applying a process to a corpus of instan-
ces. In general, once the process has been applied to the corpus, the system contains both some
residual representation of the instances and some explicit augmentation of that representation
with information that was implicit in the corpus. For example, part of the residual representation
of "He feels happy on Fridays" might be the (word sense) pair (happy feel-as-emotion), and part
of the augmentation might be the probability of "happy" co-occurring with the sense of "feel” as
an emotion. We show that for the simple, symbolic residual representation of (word sense) pairs,
the existence of such a representation in and of itself captures much of the regularity inherent in
the data. We also show how viewing this residual representation as a form of episodic memory

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 33

can enable symbolic, knowledge-rich systems like NL-Soar to take advantage of this source of
regularity in performing sense resolution.

In [Pelton and Lehman 94] we begin exploring a set of general mechanisms for managing goal-
directed behavior over extended durations. The notion of an intelligent agent performing a com-
plex set of behaviors over an extended period is a useful abstraction for both the NTD and
TacAir domains, as well as being a target description for much of current, practical Al. Such an
agent will, like people, have hundreds of goals at different levels of specificity that it pursues
simultaneously. Clearly, it is computationally undesirable to have to track the progress of each
goal at every moment, especially if the agent is interacting with an externally-dictated, realtime
environment. Instead, we would expect that an agent somehow attend to only those goals that
can make progress in its current environment or that are in conflict with those that can make
progress. The basis of our exploration is the conjecture that the same mechanisms that are neces-
sary for dealing with uncertainty in short-term behavior can be co-opted into providing the ap-
propriate behavior over long intervals as well. This paper explains those mechanisms in the con-
text of a simple, short-duration task. We begin by showing how the macro operator method for
achieving a goal requiring multiple actions breaks down when formulating agent models that
interact with an uncertain external world. A macro operator encapsulates a plan to reach an ob-
jective. Occasionally the objective will be found to be unachievable, requiring the macro
operator and its plan to be rejected. Letting the macro operator interact with the external world
does not, by itself, change this situation, but the fact that the results of the interaction are uncer-
tain, and the agent’s knowledge incomplete, does. The key idea is that the agent can’t positively
determine if progress towards the objective is being made in the external world, and thus it will
err in rejecting a macro operator that would succeed. We show that there are a number of
methods by which the agent can recover from such an operator rejection and continue toward the
operator’s objective. If we make operator rejection and recovery into a common mechanism,
then the operators and the plans they represent will be split by the interaction into a sequence of
smaller operators, each doing a portion of the work toward the objective of the larger operator.
The application of these ideas to long duration objectives is clear when we observe that the key
is managing the notion of progress in a way that allows for smooth continuation of a rejected or
suspended goal.

The majority of our work on integrating general capabilities in independently constructed agents
has centered on providing natural language comprehension and generation to agents in complex
domains. We previously discussed our initial progress in integrating with a second agent,
TacAir-Soar, an IFOR (Intelligent FORces) agent being deployed with the battlefield simulation
domain. It had been our hope that the version of NL-Soar produced during the first integration
with NTD-Soar (which modeled the NASA Test Director) would be nearly plug-compatible with
TacAir-Soar. Because there are significant differences between the way the two agents are real-
ized within the Soar architecture, this was not the case. Indeed, in many important ways, the two
systems are at opposite ends of the structural spectrum that the Soar architecture permits [Soar
94]. In addition, the implementation of the Soar architecture itself has undergone a major revi-
sion, making our prior code incompatible with the current instantiation of the TacAir agent. The
architecture now supports a conceptual model referred to as the NNPSCM, as outlined in
[Newell et al. 91].-

The TacAir agent has been converted to run under NNPSCM, and we have spent much of the
current funding period converting NL-Soar as well. Although our progress has been slowed, our

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

34 INTEGRATED SOFTWARE ARCHITECTURES

current status is promising with respect to the contract goals. The NNPSCM conversion is al-
most complete, and we have created a new version of NL-Soar that is, in theory, compatible with
TacAir Soar and, retroactively, with NTD-Soar. What this means for our goal of plug-
compatibility is that although we made an unfortunate choice in ordering our integrations (had
we done TacAir first, the resulting NL-Soar would have fit into NTD-Soar with no problems),
we have now created a version of the natural language capability that we believe will integrate
smoothly with almost any Soar system (based on the maximal dissimilarity between NTD and
TacAir on critical dimensions).

We would like to use this report as the vehicle to address two other issues relevant to inde-
pendent capabilities as outlined in the contract. First, we had originally intended to pursue visual
attention as our third capability, and have, in prior contract periods, integrated a model of visual
attention into NTD-Soar. We have not found another independently-constructed Soar system
whose designers believe they currently need a visual attention mechanism. On the other hand,
the TacAir designers and a number of others who have been interested in our work with plug-
compatible NL have urged us to explore speech recognition as our third capability. Con-
sequently, we have started down this path and are currently exploring extensions to NL-Soar that
will allow it to use the Sphinx-II system (developed at Carnegie Mellon under ARPA’s HLT
program) as part of the speech recognition capability. In order to bootstrap off existing speech
databases, our preliminary work with this capability will be in the ATIS domain (airline schedul-
ing).

The other issue concerns the nature of the third integration promised in the contract. We will be
continuing work on other battlefield simulation agents and feel that these integrations meet the
terms of the deliverables in principle. However, because the structure of these agents will be
similar to TacAir-Soar, it is unclear how much we will learn about plug-compatibility from
them. Thus, we have in mind pursuing another integration as well. This integration will be with
a Soar agent that performs dynamic route-planning on the basis of radio information. We will
look at using simulated radio broadcasts from local traffic reports as a first approximation to the
true input. The agent will use this information to update a simple graphical display of the route a
driver is following from home to work. We feel this integration is potentially exciting for three
reasons. First, it will be the second testbed for the version of NL-Soar extended to handle speech
recognition. Second, we believe it has obvious military applications (updating situation maps via
helicopter reconnaissance). Third, and most important, we anticipate exploring yet another kind
of agent during this integration. Specifically, our current plan is to integrate with a Soar agent
that uses external software to do the actual route-planning and re-planning. Competition for /O
resources surrounding such a use of an external "device" will both teach us more about plug-
compatibility and open up possibilities for integrating with other ARPA-sponsored, non-Soar Sys-
tems.

In [Lehman et al. 95] we describe our efforts that support the Soar/IFOR project’s goal of provid-
ing intelligent forces for distributed interactive simulation environments [Laird et al. 95]. The
paper describes our initial progress in integrating the revised NL-Soar capability into an Air-IFOR
agent. In particular we demonstrate how NL-Soar’s linear complexity, interruptibility, and lan-
guage processing atomicity provide a language comprehension and generation processes that do
not compromise agent reactivity.

As we reported previously, the initial integration of NL-Soar with an independently constructed

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 35

tactical air agent led to some redesign of the original system as it had been integrated with a
model of the NASA Test Director (NTD-Soar). We conjectured that we were creating a new
version of NL-Soar that would be backwards compatible with NTD-Soar. We partially verified
this expectaction by reintegrating the most current version of the NL-Soar code with the NTD
code, which had remained otherwise unchanged since August 1994. Despite the rather sig-
nificant changes to the comprehension code during the intervening time, the reintegration of NL
comprehension proved relatively painless. Only one of the required changes has any theoretical
significance — the need to add explicit pause markers that allow NL-Soar to notice the ends of
utterances. Interestingly, this pause marking (already present in TacAir’s used of NL-Soar)
matches perfectly to the transcription conventions already in place for the NTD dialogs. Pauses
were received by NL-Soar after every 100 ms (or longer) pause in the transcript; a 100 ms dura-
tion was likewise used by the original transcribers to identify end-of-utterance units. The rein-
tegration of generation proved more difficult, however, in part because the structure of genera-
tion was more heterogeneous than the structure of comprehension and in part because generation
itself has not kept up with some of the changes to comprehension. As a result of this experience
and our continued work in the tactical air domain, we have spent significant effort during this
funding period redesigning and partially reimplementing NL-Soar’s generation capability along
the more robust lines of the comprehension code. Completing this reimplementation is our top
priority in the coming six months.

We added significantly to NL-Soar in the areas of discourse knowledge and semantic represen-
tation. We have also begun to integrate with the Sphinx-II speech recognition system, and col-
lected data necessary for our third integration.

The initial implementation of the language generation capability led to code that was was more
heterogeneous and less robust than the structure of the more mature comprehension capability.
As a result of our on-going experience in integrating NL with independently constructed agents
in the tactical air domain, we have spent significant effort in this funding period in the re-
implementation of the generation capability along the more robust lines of the comprehension
code. This effort is now essentially complete and the resulting capabilities now share code, data
structures and theoretical perspectives that make the system as a whole easier to debug, maintain,
and extend. One particularly interesting result of the language generation’s redesign and re-
implementation is that it now uses the comprehension capability directly as part of its processing.
What this means, in practical terms, is that some of the learning done by the system during lan-
guage generation transfers to comprehension (and vice versa), resulting in reduced training time
for the system overall.

In addition, the initial extensions to NL comprehension and generation at the level of discourse
processing have been the object of considerable progress. In [Green and Lehman 96a] we present
a new methodology for acquiring compiled discourse knowledge and demonstrate that the result-
ing discourse knowledge can be used both in dialogue generation and interpretation. As in the
case of reuse of the comprehension capability by generation, this automatic transfer of learned
discourse knowledge between discourse generation and discourse comprehension should be us-
able in improving the training time of the system significantly. In [Green and Lehman 96b] we
explore the current state of NL-Soar, and its discourse processing in particular, with respect to
the difficult problem of conversational implicature— understanding the implied meaning behind
what is actually stated in an utterance.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-6 INTEGRATED SOFTWARE ARCHITECTURES

Finally, we have continued to push for a general, efficient solution to the problem of semantic
processing across a variety of domains. The semantic representation, which now reflects
Jackendoff’s lexical conceptual structure, has been brought in line with the working memory
data structures used by syntactic processing, again with significant code-sharing resulting.

We continued our work in creating a general language capability for intelligent Soar agents. This
work has included both a continuation of our effort in the tactical air domain (in conjunction
with John Laird’s group at the University of Michigan) and new work in the domain of simul-
taneous interpretation. Although the tactical air domain depends largely on dialogue and the in-
terpretation domain on narrative, both are critically characterized by their realtime demands and
their need for both comprehension and generation capability. The same version of NL-Soar
(NL96.04) is used in both applications.

With respect to the tactical air domain, [Green and Lehman 96¢] presents our approach to agent
modeling for communication and compares it to an approach for other types of action. The com-
parison is particularly instructive because both approaches are implemented in the same
problem-solving architecture, face similar application domain requirements, and address the
same general problem of comprehension. We show how it is possible for discourse processing to
have the benefits of viewing agents in terms of their beliefs and intentions without sacrificing
real-time performance and reactivity.

In [Green and Lehman 96d] we demonstrate how the architecture’s learning mechanism affords a
new methodology for automatically compiling discourse knowledge during discourse planning.
The resulting, efficient form of discourse knowledge can be used both in dialogue generation and
interpretation. We also show how NL96.04 unifies two disparate trends in discourse processing
by allowing for both discourse recipes and compiled knowledge to coexist and change form
within a common framework.

In [Lonsdale 96a, Lonsdale 96b] we discuss NL-Soar as an architectural account of the cognitive
process of simultaneous interpretation (SI). The activity of SI, involving the simultaneous vocal
translation of speeches from one language to another, is a complex cognitive task which involves
many aspects of general and specialized language use. The system provide the first computa-
tional environment in which to examine many of the theoretical claims about the processes,
skills, and tasks that are involved in SI. It also serves as a modelling tool to allow SI researchers
to investigate cognitive performance of the SI task at lower levels than have been examined to
date. As a baseline system it provides the framework for further computational approaches
modelling capabilities not unique to SI but shared by other language-related tasks. A discussion
of the relevant cognitive and SI research literature mentions skill components, empirical studies,
and process models to be used. The proposed work follows other modelling efforts, in particular
those involving language-task integration. We sketch the space of possible architectural con-
straints that can be posited to describe SI performance and, likewise, show how the NL-Soar
framework can be leveraged in this effort. The goal of this research is the first low-level com-
putational instantiation of the SI process. It fills a need to address SI research in a data-driven,
bottom-up fashion to offset the top-down, anecdotal and experiential approach commonly used
in SI studies. Useful information on control processes, integration of task components, the time-
course of interpretation, and low-level automaticity will be derivable from SI/Soar based studies.

In addition, we have seen significant advances in the system’s linguistic coverage (especially in

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 37

generation). In keeping with our change of focus from vision to speech, we have also made
strides in extending NL-Soar to include an application-independent speech recognition capability
by interfacing the system to the Sphinx-II speech recognizer. The core interface issue reflects a
basic incompatibility in the contributing technologies; NL-Soar is an incremental natural lan-
guage system and Sphinx-1I is not (it assumes it has the entire sentence before it begins process-
ing). To compensate, we have created a structure called the Rescorable Phonological Buffer
(RPB) that permits Sphinx to work nonincrementally, while making the input appear incremental
to NL-Soar. This construct offers the advantage of allowing feedback from NL-Soar (i.e., from
higher-level language processes) to Sphinx on a word-by-word basis. Because NL-Soar learns
continuously, such feedback is compiled over time so that the interaction can be fairly efficient.

We also pursued the goal of an independently constructed natural language comprehension and
generation capability usable by other Soar agent builders.

Our effort to create a general language capability has occurred in both the tactical air domain
(with John Laird’s group at the University of Michigan) and in the domain of simultaneous inter-
pretation; a new effort has begun in accounting for phenomena in second language acquisition.
Note that all three task domains use the same version of NL-Soar (NL97.01).

In [Smith and Lehman 97], which has been accepted to a symposium on aviation communication
at Embry-Riddle Aeronautical University, we report on current progress in providing natural lan-
guage to independently-created autonomous intelligent forces (IFORS) for distributed interactive
simulation environments in the tactical air combat domain. A long-term requirement for such
simulations is that the non-human participants be effectively indistinguishable from their human
counterparts. The capability for communicating in natural language (NL) is critical to meeting
that requirement. In a time-critical domain such as air-combat, agent reactivity is paramount.
For example, an agent must be able to quickly switch from an NL task (e.g., comprehension of a
BRASH report) to a non-NL task (e.g., missile evasion) without having to wait for the NL task to
terminate. In other cases it may be the NL-task which is more critical. NL-Soar’s linear com-
plexity (linear in the size of the message), interruptibility (time-critical tasks cannot be shut-out
by less critical ones) and atomicity (interrupted processes are left in a consistent and resumable
state) support this required reactivity. After summarizing NL-Soar’s design, we demonstrate the
practical progress of the system and discuss by way of examples the type of missions im-
‘plemented, the coverage of NL. communication, the syntactic, semantic, and discourse structures
used, and current performance data.

In [Green and Lehman 97], we generalize the work in discourse comprehension begun in the
tactical air domain, and propose an integrated architecture for discourse — generation, inter-
pretation, and recipe acquisition — and describe an implementation of this discourse architecture
in a dialogue system. In this approach, discourse recipes are acquired by compilation during
discourse planning. We show that these compiled recipes both speed up discourse generation and
can be exploited during discourse comprehension to recognize the speaker’s discourse intentions.

In {Lonsdale 97] we present an overview of our approach to the study of simultaneous inter-
pretation (SI), discussing current work in adding theoretical mechanisms and knowledge on top
of the NL-Soar theory to permit study of lower-level cognition in interpretation. We give a
sketch of the basic architecture of the total system as used in modelling comprehension. We then
explore integration of the comprehension component with other tasks, and outline a unified

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-8 . INTEGRATED SOFTWARE ARCHITECTURES

framework for studying the overall interpretation task. We discuss the system’s potential for in-
vestigating various aspects of interpretation performance. This information, along with remarks
about the more recent integration of NL-Soar’s generation component, were delivered by invita-
tion at an International Workshop on Methodological Issues in Interpreting Research, funded by
the Swiss National Science Foundation and Swiss National Academy of Sciences, in Ascona,
Switzerland.

With respect to the new work in second language acquisition, [Van Dyke and Lehman

97] describes a computational model based on NL-Soar that displays one class of errorful be-
havior of foreign-language learners. The particular area of concern is the English article system,
which has been well-documented as difficult for learners of English as a foreign language. The
paper provides a processing account that pinpoints the source of these errors in the architecture
of the production system, using NL-Soar’s control structure and learning mechanism to explain
how they arise and to characterize the conditions required for overcoming them.

3.1.2 Speedup learning and large-scale systems

In [Doorenbos and Veloso 93] we examine a set of techniques for overcoming the utility
problem in systems that use speedup learning. Speedup learning involves the acquisition of new
knowledge from experience in order to improve the future performance of a problem-solver. We
can differentiate between three aspects of this learning process: (1) the construction of new
knowledge; (2) its storage and retrieval in the knowledge base; and (3) its reuse later. The
tradeoff between the benefits of blindly increasing the size of the knowledge base and the costs
of retrieving (or matching) its contents often leads to the utility problem (i.e. the cost of using the
new knowledge may outweigh the savings it is supposed to represent). To avoid this, the
speedup learning community has paid much attention to construction and reuse but has often
overlooked the storage and retrieval aspects. Our recent work has studied the use of organization
and indexing techniques at storage time, together with efficient matching or locating methods at
retrieval time, to reduce or avoid the utility problem. We discuss our results in three speedup
learning systems: Soar, Prodigy/Analogy, and Prodigy/EBL.

In addition to this comparative work, we pushed ahead with our evaluation of match optimiza-
tions in three additional Soar systems, each of which has learned more than 100,000 chunks
without linear average growth in match cost. Indeed, one of the systems has been pushed to half
a million productions without slowdown. To understand the progress this represents, recall that
in 1992 we were the first to publish findings on system behavior at 10,000 productions, and in
1993 we were again the first, this time in examining behavior in a single system of 100,000
productions. With multiple systems at 100K productions and one at 0.5M productions, our cur-
rent work remains in the forefront of large systems research. Further, the demonstration that the
Soar architecture and its underlying implementation technology can support such large systems
positions us to take on tasks that other architectures and paradigms may well find intractable.

In systems that learn a large number of rules (productions), it is important to match the rules
efficiently in order to avoid the machine- learning utility problem. So we need match algorithms
that scale well with the number of productions in the system. In our previous progress report, we
noted that we had achieved our goal of sub-linear growth in match cost for a half-million produc-
tion system. In [Doorenbos 94] we explain the theory and algorithms that have made this pos-
sible. Specifically, we review the notion of right unlinking as a way to improve the scalability of

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 39

the Rete match algorithm, and introduce a symmetric optimization, left unlinking, demonstrating
that it makes Rete scale well on an even larger class of systems. Unfortunately, when left and
right unlinking are combined in the same system, they can interfere with each other. We
demonstrate a particular method of combining them, prove it minimizes this interference, and
analyze the worst-case remaining interference. Finally, we present empirical results showing
that the interference is small in practice, and that the combination of left and right unlinking
allows five of our seven testbed systems to learn over 100,000 rules without incurring a sig-
nificant increase in match cost.

In previous reports we have tracked progress in this area, watching as Soar systems were pushed
from 10,000 productions to 100,000 productions to 500,000 productions over the last few years,
without experiencing linear growth in the cost of matching the ever-expanding production
memory. [Doorenbos 95] analyzes the problem, presents the algorithms that make this possible,
and demonstrates the empirical results (including the performance of one system that grows to 1
million productions without slowdown in the match). This report marks the end of the research
phase of this work, and the beginning of the transition of our research results into the release
version of the architecture.

New to the area of scaling up are some results that have come from our work in creating a set of
general mechanisms for managing goal-directed behavior over extended durations. This work,
mentioned in our previous report under the heading of independent capabilities, has progressed
to where our agent, Laureli, lives in its simple simulation world for more than 200 virtual days.
The resulting growth in production memory has uncovered new areas of slowdown in the ar-
chitecture that are not in the basic match procedure. In particular, Laureli is currently
“‘reminded’’ of every goal in the past that is sufficiently similar to the one it is pursuing. Al-
though the system never pursues these completed goals, the calculations that determine that they
need not be pursued grow linearly in the number of days the system lives. Some of these cal-
culations have been susceptible to straightforward improvements in the underlying algorithms
(which will also be available in the next release). Others indicate areas for future research on
learning so that Laureli’s memory for past events is partitioned in a more cost-effective way.

Work on scaling up shifted focus from Very Large Learning Systems (VLLSs) that solve many
related problems to systems that reflect growth due to agent behavior over extended periods of
time. Agents that exist over extended periods must be able to handle a large number of goals,
opportunistically acting on them while maintaining a focus of purpose. They must also be able to
operate over long lifetimes without significant degradation in performance. We have developed a
general, domain-independent method of managing an agent’s goals so that the agent can make
progress on as many goals as possible, without spending undue resources considering goals on
which it cannot make progress ([Pelton and Lehman 95]). The key part of this method is a way
of specializing and generalizing the set of perceptual cues that are used to bring a goal into con-
sideration by the agent. Within the current funding period, this work has progressed from an
initial, rudimentary design and implementation, to the maturity required for a thesis proposal.
The proposed thesis includes empirical evaluation of the solution in the context of an internation-
ally available, on-line interactive stock trading application, FASTWeb. Such an application en-
vironment will allow us to measure performance along specific dimensions of scaling, e.g., per-
formance as a function of the total number of goals, as a function of goal conflicts, number of
plans, etc.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-10 INTEGRATED SOFTWARE ARCHITECTURES

Current progress has also included a number of performance improvements to the RETE-based
pattern matcher that is at the core of Soar. We expect these improvements to be available in the
next version of Soar, discussed below.

In [Pelton and Lehman 96] we continue our work on systems that reflect growth due to agent
behavior over extended periods of time. People manage their many tasks by ignoring those that
don’t pertain to their current environment. This paper reports work aimed at making a computer
agent (Laureli) handle its tasks in a similar manner. At any point Laureli considers only those
tasks on which she can make progress in her current environment and those that are threatened
by other tasks or environment circumstances. Laureli can manage her tasks in this way, learning
when she should be considering each of her tasks, and attempting to suspend a task whenever she
notices she is no longer making progress. Once she knows that she will appropriately remember
a task, she then suspends the task by no longer considering it until the task is remembered. An
agent that works in this manner has to make decisions at suspension time about what constitutes
an appropriate set of conditions for remembering the task. Laureli uses her planning knowledge
to create the conditions and modifies that knowledge depending upon her expectations about the
future world.

3.1.3 Soar support

Soar 6, which reimplemented the architecture in C and was completed in the last half of the
previous contract, is now in general use by the Soar community and available by anonymous ftp
to all interested researchers. An updated manual has been made available as well.

We completed the work for the release of version 6.2.5 of the architecture. This will be the last
non-NNPSCM release. Version 6.3.0 will support both the NNPSCM conceptual model and a
TCL/TK interface to the system. With these fundamental changes, there will also be a new
manual released.

We believed that the changes in Soar 6.3.0, i.e., supporting the NNPSCM view and providing a
TCL/TK interface, would help make Soar more usable. Usability has been a constant concern
and we have a number of on-going efforts (with other sources of support) that are attempting to
remedy the situation. With respect to this contract, we have provided some support along these
lines to a student who is studying Soar programmers. In [Altmann et al. 95] he explores how a
skilled programmer, working on a natural task, navigates a large information display with ap-
parent ease. Although tangential to the main thrusts of this contract, we believe this work will
contribute to our knowledge of usability.

Work continued on Soar version 7.0, which will support the NNPSCM conceptual model (as
explained in our previous report, but mentioned as version 6.3.0) and a TCL interface, on a
variety of platforms. This version already includes the performance improvements in the
RETE-based matcher that resulted from scaling-up (VLLS) research under this contract. In ad-
dition to compatibility with TCL, we have been working on compatibility with Tk and the crea-
tion of a GUI for easier interaction with the architecture. The new release format makes it easier
to build the system on the numerous platforms we support and includes the implementation of
and documentation for a newly designed, more consistent and "friendly" command set.

In [Altmann 96] we report on the completion of a detailed study of an expert Soar programmer

FINAL REPORT 1993-1999) SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-11

focussing on how she makes use of hidden external information, first recalling that it exists and
then finding it. The dissertation investigates the memory phenomena involved in recalling that
external information exists. We present data representing a programmer navigating to hidden
features in a real-world task environment. We then present a model that accounts for this
navigation by encoding and using simple episodic memories for having seen a feature. The
model inherits constraints from the underlying cognitive architecture, which specifies that learn-
ing is passive and pervasive and that it creates simple memories that depend on the feature itself
being present as a cue. The nature of these memories requires the model to recall features to its
"mind’s eye" as cues in order to retrieve them. This retrieval process requires domain
knowledge: familiarity with features in order to imagine them and an idea of conditions under
which it may be useful to recall having seen them. Recalling that a hidden feature exists prompts
the model to scroll to that feature. Thus the model’s access to external information is a function
of passively-encoded episodic memories, and retrieval of these memories using knowledge. As a
claim applied to people this process appears to overlap with a recently-published theory of
long-term working memory. This theory proposes that experts, for example in chess, use long-
term memory to expand their working memory in their domain of expertise. We propose a ubiq-
uitous, episodic, long-term working memory, in which people store information about features
with little effort, and from which they retrieve this information when it is relevant. As a study of
a Soar programmer working in Soar the protocols also provide data for understanding the fea-
tures of the language and environment that facilitate or make difficult the programming task.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH : FINAL REPORT 1993-1999

3-12 INTEGRATED SOFTWARE ARCHITECTURES

3.2 High-Performance Planning and Learning

The main characteristic of the Prodigy research project has been that of addressing planning as a
glass box decision-making process to be integrated with learning. Our long-term goal has been
to enable Prodigy to address increasingly-complex, real-world planning problems. Towards this
goal, we have been progressively enhancing the planner and the learning algorithms to cope with
the challenges presented by the real world. Our work during this contract period has occurred in
the following areas:

¢ Learning control knowledge for plan quality;

e Learning planning operators by observation and practice;

* Interaction of planning and a dynamically-changing external world;

» Comparison of planning algorithms with external ARPA sites;

o Similarity metrics for case retrieval over geometric domains;

* Theorem proving by analogy integrated with planning;

* Making efficient planning technology robust;

¢ Coping with incomplete and potentially incorrect domain knowledge.

We later centered our research in the Prodigy project on robust planning and on developing
machine learning methods to integrate with advanced planning algorithms. Specifically, we
focused on the following modules and methods:

¢ Plan quality: We concluded the development of a learning algorithm to acquire
planning control knowledge to produce plans of high quality. We achieved very
interesting results in an initial set of experiments in a complex process planning
domain.

® Learning plan action models: We pursued our work on automatically acquiring the
model of the planning actions by observation of a planning expert. The learner
builds planning operators by observing the actions of the expert, and then refines the
operators leamned through its own practice.

® Learning to reduce search: We developed techniques to learn primary effects of
operators. We also pursued research along the direction of trying to automate the
identification of simple problems to learn from.

® Analogical reasoning: We applied our previously developed techniques for plan-
ning and learning by analogical/case-based reasoning to a route planning domain
using real maps of the city of Pittsburgh. This study led to the introduction of a new
similarity metric that can consider geometric constraints efficiently.

¢ Planning: We continue to make the Prodigy algorithm accessible to the planning
community. We introduced a formalization of the Prodigy planning algorithm. We
developed, as an extension of Prodigy, a new robust and flexible planning algorithm
that can combine the advantages of least-commitment planning and state-space
search.

® Planning with external events: We are developing a planning methodology for
domains with uncertainty in the form of external events that are not completely pre-
dictable.

® Prodigy-Ul: We developed a tcl/tk-based graphical user interface that permits users
with no knowledge of Lisp (Prodigy’s implementation language) to interact easily

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES) 3-13

with the planner. It was demonstrated at the DARPA meeting in San Diego and at the
SISTO Symposium, and was very well received.

The Prodigy-UT includes:
* The planner: Prodigy4.0

* Several different planning search strategies

* Interactive building of planning domains

* A large number of planning domains and problems

» The ability to have user-driven selection of planning alternatives

» Several learning modules in ongoing release stages, including
Prodigy/Analogy, and Quality

* Examples of probabilistic planning, Weaver (described below).

e Probabilistic planning: To handle probabilistic and nondeterministic aspects in
many domains, we developed Weaver, an extension to the Prodigy planner that can
handle probabilistic outcomes of actions and external events. We investigated how
to use Prodigy’s learning capabilities in the probabilistic setting. We also inves-
tigated probabilistic representations of uncertainty in the soccer-playing domain.
We have extended Prodigy to reason about uncertain outcomes of actions and to
plan for the possibility of uncontrollable external events, and have worked on the
use of analogical reasoning and inductive learning to improve the efficiency of plan-
ning in the face of uncertainty.

® Real-world domains: To demonstrate Prodigy’s efficacy in the real world, we are
developing (1) a navigation domain that uses Pittsburgh’s actual street layout, in-
cluding additional data such as construction zones and traffic patterns, (2) a robotic
domain that plans for the Xavier mobile robot, (3) a set of soccer-playing robots to
study collaborative and adversarial planning and (4) domains based on the control of
industrial processes in chemical and power engineering.

e Learning methods: We developed several learning methods that help Prodigy plan
better. These include learning operators by observation, learning to generate higher-
quality plans, learning the primary effects of operators, and automatically changing
the domain representation to aid planning, as well as hybrid learning strategies and
work in analogy and automatic abstraction.

e Planning, learning, and search algorithms: The efficiency of planning algorithms
underlying Prodigy and other systems across the spectrum of planning problems is
not yet well understood. We continued our work of analyzing the properties of these
algorithms and making comparisons. We are investigating the use of novel search
techniques in planning and navigation. We have considered, in particular, the
problem of navigating an unknown environment. We have also extended the
Prodigy search algorithm to ensure its completeness. Finally, we began work on a
system for selecting from a library of available search algorithms the one that is
most appropriate for a given problem.

o Interleaving planning and execution: In many domains execution may have to
proceed before planning is completed, and this condition has a fundamental impact
on the planning algorithms used. We continued our studies of this effect.

e Collaborative, mixed-initiative, and adversarial planning: Work in multiagent plan-
ning is being done in the soccer-playing domain. In addition we have begun to study

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-14 . INTEGRATED SOFTWARE ARCHITECTURES

mixed-initiative planning, where the agents may be both human and machine, allow-
ing close collaboration between the human planner and automatic planning system.

® We study the problems of coordinating multiple independent agents and using them
effectively against their adversaries, in the setting of a soccer-playing domain. We
use real mini-robots in our exploration, thus combining the coordination problem
with the task of real-world navigation.

3.2.1 Plan repair mechanisms

Real application domains require effective planning even when planning operators and other
domain knowledge may be incomplete or inaccurate. For instance, military logistics planning is
based on reliable information (such as terrain-topography, capabilities of transport vehicles, and
so on), as well as less-than-reliable information (long-range weather forecasts, road conditions,
enemy capabilities, etc.). Finally, some information may become available only at plan execu-
tion time (for instance, enemy tactical deployment), not at advance planning time.

In order to start coping with such situations in automated planning, present state-of-the art
planners—such as Prodigy— require several extensions. One such extension under active inves-
tigation is dynamic plan repair. In essence this strategy generates a plan from best-available in-
formation but then closely monitors its execution. When the execution reaches an impasse or
deviates from the expected, the plan is repaired from the current state to overcome the impasse.
The full power of the planner is reinvoked, as localized repairs (tried first) may not prove suf-
ficient and substantive replanning may be required. In addition to immediate plan repair,
Prodigy extends is domain knowledge through experience, so as to be better prepared to plan the
next time the same knowledge is required, but now in its new, corrected or extended form.

The plan repair process has been successfully applied in the larger context of a learning-from-
observation framework to a large machining-floor, process-planning domain.

3.2.2 Learning plan-optimization rules

Research on automatically acquiring control rules for plan para-optimization is progressing suc-
cessfully. Although Al planners have improved substantially in recent years with respect to ex-
pressivity, generality, and efficiency of the planning process itself, less attention was paid to the
execution-efficiency of the plan. Present research aims at learning rules to synthesize plans
whose execution-efficiency is maximized. These rules are acquired from experience and through
apprenticeship to experts. Preliminary results indicate that the methods do indeed work at reduc-
ing wasted action, at selecting the most appropriate (e.g. least cost) path among multiple pos-
sibilities, and at producing shorter plans. Quantitative results should be available by next report-
ing period.

3.2.3 Dissemination of Prodigy 4.0 architecture

Prodigy 4.0 is the robust underlying substrate for all of the present investigations, combining
linear and nonlinear planning, single-level and hierarchical planning, deliberative and anytime
planning, with several learning mechanisms. The Prodigy 4.0 planning substrate was completed
last contract period, and it is being distributed to other ARPA research sites at their request. We
are also maintaining and enhancing the basic system and its documentation as required.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-15

3.2.4 Incremental learning of control knowledge for nonlinear problem solving

We developed a learning method that combines a deductive and an inductive strategy to learn
control knowledge efficiently. The approach consists of initially bounding the explanation to a
predetermined set of problem-solving features. Since there is no proof that the set is sufficient to
capture the correct and complete explanation for the decisions, the control rules acquired are then
refined, if and when applied incorrectly to new examples. The method is especially significant
as it applies directly to nonlinear planning where the search space of possible plans is complete
and therefore vast. We implemented our approach in Hamlet as a new inductive learning system
within the context of the Prodigy architecture. The control rules for individual decisions that
Hamlet learns correspond to new learning opportunities offered by the nonlinear problem solver.
These opportunities go beyond those offered by the linear problem solver, and involve, among
other issues, completeness, quality of plans, and opportunistic decision making. Preliminary em-
pirical experiments yielded promising results illustrating Hamlet’s learning performance.

3.2.5 Learning control knowledge for plan quality

In [Perez and Carbonell 94] we discuss our work in learning how to produce plans of better
quality from experience. Generating production-quality plans is an essential element in trans-
forming planners from research tools into real-world applications. However most of the work to
date on learning planning control knowledge has been aimed at improving the planning
efficiency— that is, learning to make the planner run faster by searching the solution space more
efficiently. This earlier work—much of which was done with Prodigy, while other work was
done outside Carnegie Mellon— has been termed ‘‘speed-up learning’’. In contrast the new
work focuses on learning control knowledge to guide a planner towards better solutions(i.€., to
improve the plan quality as the planner’s problem solving experience increases). We motivate
the use of quality-enhancing search control knowledge and its automated acquisition from
problem solving experience. We introduce an implemented mechanism for learning such control
knowledge and some of our preliminary results in a process planning domain (see also [Perez
94a)).

In [Perez 94b] we present our learning approach in the context of its impact in goal-driven learn-
ing. The purpose of a learner is to make changes to a performance system to allow it to perform
similar tasks more effectively the next time. The meaning of ‘‘more effectively’’ can be only
asserted in the context of the learner’s goals. Three types of learning goals can be distinguished
in the context of planning systems: domain goals, planning efficiency goals, and plan quality
goals. Most work to date on learning for problem solving has focused on the first two types. We
present a learning mechanism that focuses on the third type, namely learning control knowledge
to improve plan quality, and give some preliminary results on the use of this method in a process
planning domain.

In [Borrajo and Veloso 94] we advocate a learning method in which deductive and inductive
strategies are combined to efficiently learn control knowledge. The approach consists of initially
bounding the explanation to a predetermined set of problem solving features. Since there is no
proof that the set is sufficient to capture the correct and complete explanation for the decisions,
the control rules acquired are then refined if and when applied incorrectly to new examples. The
method is especially significant as it applies directly to nonlinear problem solving, where the
search space is complete. In this paper, we also introduce Hamlet, a system in which we imple-

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-16 INTEGRATED SOFTWARE ARCHITECTURES

ment this learning method within the context of the Prodigy architecture. Hamlet learns control
rules for individual decisions corresponding to new learning opportunities offered by the non-
linear problem solver; these opportunities go beyond those afforded by the linear solver. These
involve, among other issues, completeness, quality of plans, and opportunistic decision making.
Finally, we show empirical results illustrating Hamlet’s learning performance.

3.2.6 Learning domain knowledge by observation and practice

The work described in [Wang 94a] addresses learning planning operators by observing expert
agents and subsequent knowledge refinement in a learning-by-doing paradigm. The obser-
vations of the expert agent consist of:

* The sequence of actions being executed
e The state in which each action is executed

* The state resulting from the execution of each action.

Planning operators are learned from these observation sequences in an incremental fashion utiliz-
ing a conservative specific-to-general inductive generalization process. In order to refine the
new operators to make them correct and complete, the system uses the new operators to solve
practice problems, analyzing and learning from the execution traces of the resulting solutions or
execution failures. We describe techniques for planning and plan repair with incorrect and in-
complete domain knowledge, and for operator refinement through a process that integrates plan-
ning, execution, and plan repair. Our leamning method is demonstrated in multiple domains (see
also [Wang 94b}). '

In [Wang and Veloso 94] we discuss the interaction between learning domain and control
knowledge by observation and practice. Acquiring planning knowledge from experts is a rather
difficult knowledge engineering task. This work provides a novel method for accumulating
domain and control planning knowledge by learning from the observation of expert planning
agents and from one’s own practice. Acquiring control knowledge that effectively copes with
the incremental changes in the domain knowledge is a challenging problem. Our approach to
this problem is to accumulate complete problem solving episodes, or ‘‘macros’’, from obser-
vation. These macros can then be reused and refined at practice time.

3.2.7 Planning in a dynamically-changing external world

In [Blythe 94a] we describe a planning methodology for domains with uncertainty in the form of
external events that are not completely predictable. The events are represented by enabling con-
ditions and probabilities of occurrence. The planner is goal-directed and backward chaining, but
the subgoals are suggested by analyzing the probability of success of the partial plan rather than
being simply the open conditions of the operators in the plan. The partial plan is represented as a
Bayesian belief net to compute its probability of success. Since calculating the probability of
success of a plan can be quite expensive, we introduce two other techniques for computing it,
one that uses Monte Carlo simulation to estimate it and one based on a Markov chain represen-
tation that uses knowledge about the dependencies between the predicates describing the domain
(see also [Blythe 94b}).

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-17

3.2.8 Comparison of planning algorithms

In [Veloso and Blythe 94] we compare Prodigy’s nonlinear state-space based planner with
SNLP, a nonlinear plan-space based planner. Recently, several researchers have demonstrated
domains where partially-ordered planners outperform totally-ordered planners. In this paper, we
demonstrate that totally-ordered planners sometimes have an advantage. We describe a series of
domains in which Prodigy4.0 consistently outperforms SNLP and introduce the concept of
““linkability’’ to characterize the class of domains for which this happens. Linkability highlights
the fact that partially-ordered planners commit to causal links in much the same way that totally-
ordered planners commit to step ordering.

In [Stone and Veloso 94a] we present our work on the need for different, domain-independent
search heuristics for planning, such as those used by Prodigy’s planning algorithm. We support
our belief that no single search heuristic performs more efficiently than others for all problems or
in all domains. The paper presents three different, domain-independent search heuristics of in-
creasing complexity. We run Prodigy4.0 with these heuristics in a series of artificial domains
where, in fact, one of the heuristics performs more efficiently than the others. However, we
introduce an additional simple domain where the apparently worst heuristic outperforms the
other two. The results we obtained in our empirical experiments lead to the main conclusion of
this paper: Planning algorithms need different search heuristics in different domains. We con-
clude by advocating the need to learn the correspondence between particular domain charac-
teristics and specific search heuristics for planning efficiently in complex domains.

3.2.9 Similarity metrics for case retrieval geometric domains

In [Haigh and Shewchuk 94] we present our work on defining similarity metrics to support ef-
ficient retrieval of planning cases for route planning in real maps. Case-based reasoning is a
problem solving method that uses stored solutions to problems to aid in solving similar new
problems. One of the difficulties of case-based reasoning is identifying cases relevant to a
problem. If the problem is defined on a geometric domain—for instance, planning a route using
a city map —it becomes possible to take advantage of the geometry to simplify the task of find-
ing appropriate cases. We propose a methodology for determining a set of cases that collectively
forms a good basis for a new plan and may include partial cases, unlike most existing similarity
metrics. This methodology is applicable in continuous-valued domains, where one cannot rely
on the traditional method of simple role-substitution and matching.

Our approach transforms the problem of identifying relevant cases into a geometric problem with
an exact solution. We construct two similar algorithms for solving the geometric problem. The
first algorithm returns a correct solution but is prohibitively slow. The second algorithm, based
on the use of a Delaunay triangulation as a heuristic to model the case library, is fast and returns
an approximate solution that is within a constant factor of optimum. Both algorithms return a
good set of cases for geometric planning. We have implemented the second algorithm within a
real-world robotics path planning domain.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-18 INTEGRATED SOFTWARE ARCHITECTURES

3.2.10 Theorem proving by analogy integrated with planning

In [Melis and Veloso 94] we present our work on how *‘analogy makes proofs feasible.’’ Many
mathematical proofs are hard for humans to generate and even harder for automated theorem
provers. Classical techniques of automated theorem proving involve the application of basic
rules, of built-in special procedures, or of tactics. Melis introduced a new method for analogical
reasoning in automated theorem proving. In this paper we show how Veloso’s derivational anal-
ogy replay method may be related and extended to encompass analogy-driven, proof-plan con-
struction. The method is evaluated by showing the proof-plan generation of the Pumping Lemma
for context-free languages derived by analogy with the proof plan of the Pumping Lemma for
regular languages. This is an impressive evaluation test for the analogical reasoning method ap-
plied to automated theorem proving, since the automated proof of this Pumping Lemma is
beyond the capabilities of any of the current automated theorem provers.

3.2.11 Enabling efficient planning technology

In [Fink and Veloso 94] we present a formal description of the planning algorithm used in the
Prodigy4.0 system. The algorithm is based on an interesting combination of backward-chaining
planning and simulation of plan execution. The backward-chainer selects goal-relevant
operators, then Prodigy simulates their application to the current state of the world. The system
can use different backward-chaining procedures, some of which are presented in the paper.

In [de Silva 94] we discuss ‘‘goal-clobbering’” avoidance in nonlinear planners. A central issue
in nonlinear planning is the ordering of operators so as to avoid undesirable interactions between
their effects. Goal-Clobbering Avoidance (GCA) attempts to avoid some interactions in a
partially-ordered plan by promoting or demoting a sequence of operators, rather than individual
operators. Effectively, it simultaneously applies Chapman’s Modal Truth Criterion to all
operators in the sequence, using precompiled information about the domain. GCA has yielded
large savings in planning time in numerous domains on the nonlinear planner Prodigy.

Finally we have been working on a new version of the Prodigy planner. This incarnation is
implemented in C, as opposed to Lisp, and has a modified search algorithm that makes use of
dynamic backtracking. Dynamic backtracking combines back jumping with caching to allow
reusing information that would otherwise be lost and recalculated. The C version uses domain-
and problem-input files that are not compatible with the Lisp version, but work is being done on
a conversion program to move Lisp domain/problem definitions to the C format, and vice versa.

In conclusion, the first half of 1994 has proven to be an extremely productive time for the
Prodigy project by almost any metric: infusion of new ideas, publications, scaling-up, recog-
nition in the field, external sites requesting the programs, successful experiments, and so on.

3.2.12 Plan quality

Process planning poses significant computational requirements due to the variety of alternative
processes, their complexity, and their interactions. General-purpose planners are not generally
considered a practical approach, and most current research focuses on special-purpose planning
systems. Our research aims to provide expressive, general-purpose planners, together with learn-
ing algorithms that can improve their efficiency, the accuracy of their domain model, and the
quality of their plans [Gil and Perez 94]. Process planning is one of the large-scale, complex

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-19

domains that we have implemented in Prodigy to demonstrate the feasibility of our approach.
Our current model of process planning is still far from comprehensive and is limited in many
ways, but it reflects many of the complexities involved in the task. [Perez 94a] describes how
Prodigy learns control knowledge, acquires domain knowledge, and improves the quality of its
plans for this application domain using general-purpose planning and learning algorithms.

3.2.13 Learning plan action models

Acquiring knowledge from experts for planning systems is a difficult task, but is essential for
any applications of planning systems. [Wang and Carbonell 94] addresses the issue of automatic
acquisition of planning operators. Planning systems learn operators by observing the solution
traces of expert agents, and subsequently refining knowledge in a learning-by-doing paradigm.
Our approach is domain-independent and assumes minimal requirements for a priori knowledge
and expert involvement in order to reduce the burden on the knowledge engineer and domain
experts. Planning operators are learned from these observation sequences in an incremental
fashion utilizing a conservative specific-to-general inductive generalization process. In order to
refine the acquired operators to make them correct and complete, the system uses these operators
to solve practice problems, analyzing and learning from the execution traces of the resulting
solutions or execution failures. We describe techniques for planning and plan repair with incor-
rect and incomplete domain knowledge, and for operator refinement through a process which
integrates planning, execution, and plan repair. Our learning method is implemented on top of
the Prodigy architecture and has been demonstrated in the extended-STRIPS domain and a subset
of the process planning domain [Wang 94b].

3.2.14 Learning to reduce search

Using primary effects of operators in planning is an effective approach to reducing planning time
and improving solution quality. In the past, the characterization of ‘‘good’’ primary effects has
remained at an informal level. No method has been known to automatically choose primary
effects of operators for a given domain specification. In [Fink and Yang 94a, Fink and Yang
94b] we formalize the use of primary effects in planning, present a criterion for selecting useful
primary effects that guarantee the efficiency and completeness of planning, and prove the near-
optimality of solutions found by planning with primary effects. Based on the formalization we
describe an algorithm for selecting automatically the primary effects of planning operators. We
show that the algorithm performs efficiently and produces primary effects that enable a planner
to generate near-optimal solutions with high probability. We also demonstrate empirically the
effectiveness of the learned primary effects in reducing planning time.

Learning from past experience allows a problem solver to increase its solvability horizon from
simple to complex problems. For planners learning involves a training phase during which
knowledge is extracted from simple problems. But how are these simple problems constructed?
All current learning and problem solving systems require the user to provide the training set.
However, it is rarely easy to identify problems that are both simple and useful for learning, espe-
cially in complex applications. In [Stone and Veloso 94b] we present our initial research
towards the automated or semi-automated identification of these simple problems. From a dif-
ficult problem and a corresponding, partially-completed search episode, we extract auxiliary
problems with which to train the learner. We motivate this overlooked issue, describe our ap-
proach, and illustrate it with examples.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-20 INTEGRATED SOFTWARE ARCHITECTURES

3.2.15 Analogical reasoning

Numerous applications can benefit from the ability to find optimal or good routes from real maps
automatically. Several previous efforts therefore have endeavored to create and use real maps in
computer applications. However, for the purpose of route planning, maps cannot be seen as
static and complete, as there are dynamic factors and missing information that affect the selec-
tion of good routes, factors such as time of the day, traffic, construction, one- versus multi-lane
roads, residential areas, etc. In [Haigh et al. 94] we describe our method for planning routes and
dynamically updating the information available in a map. We show how we plan routes by reus-
ing past routing cases that collectively form a good basis for generating a new routing plan. We
briefly present our similarity metric for retrieving a set of similar routes. The metric effectively
takes into account the geometric and continuous-valued characteristics of a city map. We then
present how the planner produces the route plan by analogy with the retrieved similar past
routes. Finally, we show how a real traversal of the route is a learning opportunity to refine the
domain information and produce better routes. We illustrate our algorithms on a detailed online
map of the city of Pittsburgh containing over 18,000 intersections and 25,000 street segments.

Case-based reasoning is a problem-solving method that uses stored problem solutions to aid in
solving similar new problems. One of the difficulties of case-based reasoning is identifying
cases relevant to a problem. If the problem is defined on a geometric domain—for instance,
planning a route using a city map—it becomes possible to take advantage of the geometry to
simplify the task of finding appropriate cases. In [Haigh and Shewchuk 94] we propose a
methodology for determining a set of cases that collectively form a good basis for a new plan
and may include partial cases, unlike most existing similarity metrics. This methodology is ap-
plicable in continuous-valued domains, where one cannot rely on the traditional method of
simple role-substitution and matching. The problem of identifying relevant cases is transformed
into a geometric problem with an exact solution. We construct two similar algorithms for solv-
ing the geometric problem. The first algorithm returns a correct solution, but is prohibitively
slow. The second algorithm, based on the use of a Delaunay triangulation as a heuristic to model
the case library, is fast and returns an approximate solution that is within a constant factor of
optimum. Both algorithms return a good set of cases for geometric planning. We have im-
plemented the second algorithm within a real-world robotics path planning domain.

3.2.16 Planning

In [Fink and Veloso 94], we present a formal description of the planning algorithm used in the
Prodigy4.0 system. The algorithm is based on an interesting combination of backward-chaining
planning and simulation of plan execution. The backward-chainer selects goal-relevant
operators, and then Prodigy simulates their application to the current state of the world. The
system can use different backward-chaining procedures, some of which we show.

Existing planners differ along several dimensions, including the nature of the search space, the
plan step ordering commitments, and the use of the goal and initial states while planning. In
particular some planners use a least-commitment strategy, i.e., they delay ordering commitments
and search the space of possible plans. These planners reason from the initial state and from a
set of ordering constraints that are regressed from the goal. Other planners commit eagerly to
step orderings in order to make use of a uniquely specified state while planning. These planners
back-chain from the goal and use their internal state to simulate plan execution. There has been

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 321

increasing evidence that neither commitment strategy can efficiently handle the complete
spectrum of complex, real-world planning problems. In [Veloso and Stone 95] we introduce a
new planning algorithm that can use both types of commitment strategies, thus enlarging the
range of problems that it can solve efficiently. Our new algorithm, FLECS, uses a flexible com-
mitment strategy: It can either delay ordering commitments or commit eagerly and simulate an
execution sequence. FLECS can vary its commitment strategy across different problems and
domains and also during a single planning problem. FLECS represents a novel contribution to
planning in that it introduces explicitly the choice of the commitment strategy to be used.

3.2.17 Planning with external events

In [Blythe 94a), we describe a planning methodology for domains with uncertainty in the form of
external events that are not completely predictable. The events are represented by enabling con-
ditions and probabilities of occurrence. The planner is goal-directed and backward chaining, but
the subgoals are suggested by analyzing the probability of success of the partial plan rather than
being simply the open conditions of the operators in the plan. The partial plan is represented as a
Bayesian belief net to compute its probability of success. Since calculating the probability of
success of a plan can be very expensive, we introduce two other techniques for computing it: one
that uses Monte Carlo simulation to estimate it, and one based on a Markov chain representation
that uses knowledge about the dependencies between the predicates describing the domain.

Probabilistic planners that use probabilities to represent and reason about uncertainty in the plan-
ning domain typically have a larger search space than their classical counterparts. Therefore
heuristics that can reduce their search effectively are even more important. The ‘‘footprint™’
principle leads to a family of heuristics for probabilistic planners produced by attempting to
make subsequent refinements to a plan apply to disjoint sets of states [Blythe 94c, Blythe 95].
Heuristics derived by this principle are shown to be effective for two probabilistic planners,
Buridan and Weaver, which are organized around quite different search techniques.

3.2.18 Real-world domains

Automated route planning consists of using real maps in computer applications to find good map
routes automatically. Most online map representations do not include information that may be
relevant for the purpose of generating good realistic routes, such as traffic patterns, construction,
and one-way streets. Furthermore, the notion of a good route is dependent on a variety of factors,
such as the day of the week, the time of day, and may also be user-dependent. These factors may
be acquired incrementally with route planning and execution experience. One promising ap-
proach we’re exploring is analogical reasoning. Analogical reasoning, as an instance of case-
based reasoning, is a method of using past experience to improve problem solving performance
in new, similar situations.

Our work applies analogical reasoning to route planning through the accumulation and reuse of
previously traversed routes [Haigh et al. 96]. We show how to exploit the geometric characteris-
tics of this domain in the storage, retrieval, and reuse main phases of the analogical reasoning
process. We demonstrate how our route planning method retrieves and reuses multiple, past rout-
ing cases that collectively form a good basis for generating a new routing plan. To find a good
set of routes, we have designed a similarity metric that takes into account the geometric and
continuous-valued characteristics of a city map. Our paper presents the replay mechanism and

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-22 INTEGRATED SOFTWARE ARCHITECTURES

the method the planner uses to produce a route plan by analogy with past routes retrieved by the
similarity metric. We discuss the strategy used to merge a set of cases and generate a new route.
We use illustrative examples and show some empirical results from a detailed online map of the
city of Pittsburgh containing over 18,000 intersections and 25,000 street segments.

In [Stone and Veloso 95], we explore two advantages of interleaving execution with planning.
First, the overall planning and execution time can be reduced. Second, information from the
environment can be incorporated into the planner’s knowledge of the world. We extend the
Prodigy planner to handle execution as prompted by the user and to incorporate information that
results from this execution. Such information can either arise automatically or can be input by
the user. Finally, we briefly discuss ways to help the user determine potentially useful or neces-
sary points for execution during planning.

In [Haigh and Veloso 96a] we describe Rogue, an integrated planning and executing robotic
agent. Rogue is designed to be a roving office gopher unit, doing tasks such as picking up and
delivering mail and returning and picking up library books, in a setup where users can post tasks
for the robot to do. We have been working towards the goal of building a completely
autonomous agent which can learn from its experiences and improve upon its own behavior with
time. This paper describes what we have achieved to-date:

1. A system that can generate and execute plans for multiple interacting goals which

arrive asynchronously and whose task structure is not known a priori, interrupting
and suspending tasks when necessary,

2. A system which can compensate for minor problems in its domain knowledge,
monitoring execution to determine when actions did not achieve expected results
and replanning to correct failures.

In the Rogue system, we have developed an architecture that integrates high-level planning with
a low-level executing robotic agent. Rogue is designed as the office "gofer" task planner for the
Xavier robot. User requests are interpreted as high-level planning goals, such as getting coffee,
and picking up and delivering mail or faxes. Users post tasks asynchronously and Rogue controls
the corresponding planning and execution continuous process. In [Haigh and Veloso 97a] we
present the extensions to a nonlinear state-space planning algorithm to allow interactions with
the robot executor. We focus on presenting how executable steps are identified based on the
planning model and predicted execution performance; how interrupts from user requests are
handled and incorporated into the system; how executable plans are merged; and how monitoring
execution can add more perceptual knowledge to the planning and possible needed re-planning
processes. The complete Rogue system will learn from its planning and execution experiences to
improve, with time, upon its own behavior.

Reliable and efficient execution of widely varied robot tasks in a dynamic world requires com-
plex planning. Predicting all the eventualities and hand-coding corresponding behaviors is in-
feasible. We therefore aim at developing automated, machine-learning algorithms that examine
real execution traces and extract relevant information with the goal of improving planning and
execution behavior. In [Haigh and Veloso 97b] we present the content of an execution trace for
the Xavier robot. We introduce the data representation of the path planning and navigation
modules, emphasizing their differences and showing how the execution trace maps into the
topological map used by the path planner. We describe the learning issues we address to handle
the uncertainty and scale of the execution traces. We identify learning data from expectation

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-23

failures, and describe how situation-dependent features can be attached to the arc costs in the
map and used to predict and avoid failure. Although preliminary, this work proved critical in
setting the basic requirements for effective learning in a real-world framework with extensive
continuous and probabilistic data. It provides the foundations for our ongoing development of
the complete learning algorithm and further experimental work.

[Souza and Veloso 96a] describes an Al-planning-based framework to support the activities of a
human operator in a supervisory control system. The framework uses an Al planning and learn-
ing substrate architecture and is designed for integration within general, third-party, realtime
software. Our goal is to build a testbed architecture for research in Al planning applications, such
as electrical and industrial processes. Al planning techniques, as opposed to more traditional,
rule-based systems, can be useful in the automation of the supervision of process systems, as
they provide rich planning representations and algorithms. We developed an Al planning system
for a boiler power plant domain by first developing a set of planning operators from an extended
multilevel flow modeling of the plant. Our planner reasons about goals and subgoals and
generates plans for different scenarios, including the sequence for starting-up the plant. We show
our approach to acquiring the domain knowledge, well-known as a difficult enterprise for real-
world applications. We demonstrated that our modeling approach is successful in mapping the
supervisory system knowledge into a planning representation.

3.2.19 Prodigy-Ul

The Prodigy user interface supports the process of both building and running a planning domain
in Prodigy. It was designed to be highly modular, requiring no changes to the code of the
Prodigy planner to run, and extensible, so that interfaces to other modules built on Prodigy could
be integrated easily into the interface. In [Blythe et al. 96] we describe how these goals were
achieved. We demonstrate building a domain and animating the planning process. We describe
extensions to the user interface to support planning by analoglcal reasoning and probabilistic
planning with Prodigy.

3.2.20 Learning methods

Learning by observation and practice

[Wang 95] describes an approach to learning planning operators automatically by observing ex-
pert solution traces and to further refine the operators through practice in a learning-by-doing
paradigm. This technique uses the knowledge naturally observable when experts solve
problems, without need of explicit instruction or interrogation. Our approach differs from
knowledge acquisition tools in that it does not require a considerable amount of direct interaction
with domain experts. It differs from other work on automatically learning operators in that it
does not require initial approximate planning operators or strong background knowledge.

The inputs to our learning system are: the description language for the domain, experts’ problem
solving traces, and practice problems to allow learning-by-doing operator refinement. Given
these inputs, our system automatically acquires the preconditions and effects (including con-
ditional effects and preconditions) of the operators. This representation is exactly what is used
by most operator-based planners such as STRIPS, TWEAK, Prodigy, SNLP, and UCPOP. We
present empirical results to demonstrate the validity of our approach in the process planning

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-24 INTEGRATED SOFTWARE ARCHITECTURES

domain. These results show that the system learns operators in this domain well enough to solve
problems as effectively as human-expert coded operators.

Learning search control knowledge to improve plan quality

Generating good, production-quality plans is an essential element in transforming planners from
research tools into real-world applications, but one that has been frequently overlooked in
research on machine learning for planning. Most work has aimed at improving the efficiency of
planning (*‘speed-up learning’’) or at acquiring or refining the planner’s action model. [Perez
95] focuses on learning search-control knowledge to improve the quality of the plans produced
by the planner.

Knowledge about plan quality in a domain comes in two forms: (a) a post-facto quality metric
that computes the quality (e.g. execution cost) of a plan, and (b) planning-time decision-control
knowledge used to guide the planner towards high-quality plans. The first kind is not operational
until after a plan is produced, but is exactly the kind typically available—in contrast to the far
more complex operational decision-time knowledge. Learning operational quality control
knowledge can be seen as translating the domain knowledge and quality metrics into runtime
decision guidance. The full automation of this mapping based on planning experience is the
ultimate objective of this work.

Given a domain theory, a domain-specific metric of plan quality, and problems that provide
planning experience, the Quality architecture we developed automatically acquires operational
control knowledge that effectively improves the quality of plans generated. Qualiry can (option-
ally) learn from human experts who suggest improvements to the plans at the operator (plan step)
level. We have designed two distinct domain-independent learning mechanisms to acquire
quality control knowledge efficiently. They differ in the language used to represent the learned
knowledge, namely control rules and control knowledge trees, and in the kinds of quality metrics
for which they are best suited.

The Quality learning mechanism is fully implemented on top of the Prodigy4.0 nonlinear plan-
ner. Empirical evaluation has shown that the learned knowledge produces near-optimal plans
(reducing before-learning plan execution costs 8% to 96%). Although the learning mechanisms
and learned knowledge representations have been developed for Prodigy4.0, the framework is
general and addresses a problem that must be confronted by any planner that treats planning as a
constructive decision-making process.

Integrating planning and learning

Planning is a complex reasoning task well suited to the study of improving performance and
knowledge by learning, i.e. by accumulation and interpretation of planning experience. Prodigy
is an architecture that integrates planning with multiple learning mechanisms. Learning occurs at
the planner’s decision points, and integration in Prodigy is achieved via mutually interpretable
knowledge structures. [Veloso et al. 95] describes the Prodigy planner, briefly reports on several
learning modules developed earlier in the project, and presents in more detail two recently ex-
plored methods to learn to generate plans of better quality. We introduce the techniques, il-
lustrate them with comprehensive examples, and show preliminary empirical results. The article
also includes a retrospective discussion of the characteristics of the overall Prodigy architecture
and discusses their evolution within the goal of the project of building a large and robust in-
tegrated planning and learning system.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-25

Design of representation-changing algorithms

The performance of all problem-solving systems depends crucially on problem representation.
The same problem may be easy or difficult to solve depending on the way we describe it.
Researchers have designed a variety of learning algorithms that deduce important information
from the description of the problem domain and use the deduced information to improve the
representation. Examples of these representation improvements include generating abstraction
hierarchies, replacing operators with macros, and decomposing complex problems into sub-
problems. There has, however, been little research on the common principles underlying
representation-improving algorithms and the notion of useful representation changes has
remained at an informal level.

In [Fink 95a, Fink 95b], we present preliminary results on a systematic approach to the design of
algorithms for automatically improving representations. We identify the main desirable proper-
ties of such algorithms, present a framework for formally specifying these properties, and show
how to implement a representation-improving algorithm based on the specification of its proper-
ties. We illustrate the use of this approach by developing novel algorithms that improve problem
representations.

Planning with primary effects

The use of primary effects in planning is an effective approach to reducing search [Fink and
Yang 95]. The underlying idea of this approach is to select certain "important” effects among
those of each operator, and to use an operator only for achieving its important effects. In the past,
there has been little analysis of planning with primary effects and few experimental results. We
provide empirical and analytical results on the use of primary effects. First, we experimentally
demonstrate that the use of primary effects may lead to an exponential reduction of the planning
time. Second, we analytically explain the experimental results and identify the factors that in-
fluence the efficiency of planning with primary effects. Third, we describe an application of our
analysis to predicting the performance of a planner for a given selection of primary effects.

Integrating planning and learning

In [Wang 96] we describe issues that arise when integrating a planner with a system that learns
planning operators incrementally, and discuss our approaches to address these issues. During
learning, domain knowledge can be incomplete and incorrect in different ways; therefore the
planner must be able to use incomplete domain knowledge. This presents the following chal-
lenges for planning: How should the planner effectively generate plans using incomplete and
incorrect domain knowledge? How should the planner repair plans upon execution failures?
How should planning, learning, and execution be integrated? This paper describes how we ad-
dress these challenges in the framework of an integrated system, called Observer, that learns
planning operators automatically and incrementally. In Observer, operators are learned by ob-
serving expert agents and by practicing in a learning-by-doing paradigm. We present empirical
results to demonstrate the validity of our approach in a process planning domain. These results
show that practice, in using our algorithms for planning with incomplete information and plan
repair, contributes significantly to the learning process.

In [Perez 96] we describe Quality, a domain-independent architecture that learns operational
quality-improving search-control knowledge given a domain theory, a domain-specific metric of
plan quality, and problems which provide planning experience. Quality can (optionally) interact

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-26 . INTEGRATED SOFTWARE ARCHITECTURES

with a human expert in the planning application domain who suggests improvements to the plans
at the operator (plan step) level. The framework includes two distinct domain-independent
learning mechanisms which differ in the language used to represent the learned knowledge,
namely control rules and control knowledge trees, and in the kinds of quality metrics for which
they are best suited. Quality is fully implemented on top of the Prodigy4.0 nonlinear planner and
its empirical evaluation has shown that the learned knowledge is able to substantially improve
plan quality.

[Veloso and Aamodt 96] contains the papers presented at the First International Conference on
Case-based Reasoning, ICCBR-95, held on October 23-26, 1995, in Sesimbra, Portugal. (Agnar
Aamodt and Manuela Veloso served as the conference program chairpersons.) ICCBR-95 marks
the start of a joint CBR conference series that will follow and extend the CBR workshops that
have taken place in the United States since 1988 and Europe since 1993. The overall aim of
ICCBR-95 was to advance the scientific and application-oriented state of the CBR field by
bringing researchers and system builders together for presentation of results and discussions of
problem issues. The papers fell into the following categories: case and knowledge representation;
case retrieval; nearest neighbor methods; case adaptation and learning; cognitive modeling; in-
tegrated reasoning methods; and application-oriented methods.

This work is now available as a book chapter, [Veloso 96a].

General-purpose generative planners use domain-independent search heuristics to generate solu-
tions for problems in a variety of domains. However, in some situations these heuristics force
the planner to perform inefficiently or obtain solutions of poor quality. Learning from ex-
perience can help to identify the particular situations for which the domain-independent heuris-
tics need to be overridden. Most of the past learning approaches are fully deductive and eagerly
acquire correct control knowledge from a necessarily complete domain theory and a few ex-
amples to focus their scope. These learning strategies are hard to generalize in the case of non-
linear planning, where it is difficult to capture correct explanations of the interactions among
goals, multiple planning operator choices, and situational data. In [Borrajo and Veloso 96] we
present a lazy learning method that combines deductive and inductive strategies to learn control
knowledge efficiently and incrementally with experience. We present Hamlet, a system that
learns control knowledge to improve both search efficiency and the quality of the solutions
generated by a nonlinear planner, namely Prodigy4.0. We have identified three lazy aspects of
our approach, from which we believe Hamlet greatly benefits: lazy explanation of successes,
incremental refinement of acquired knowledge, and lazy learning to override only the defauit
behavior of the problem solver. We show empirical results that support the effectiveness of this
overall lazy learning approach in terms of improving the efficiency of the problem solver and the
quality of the solutions produced.

Using primary effects of operators provides an effective approach to improving the efficiency of
planning. The characterization of ‘‘good’’ primary effects, however, has remained at an informal
level and there have been no algorithms for selecting primary effects of operators. In [Fink and
Yang 96] we formalize the use of primary effects in planning and present a criterion for selecting
useful primary effects, which criterion guarantees efficiency and completeness. We analyze the
efficiency of planning with primary effects and the quality of the resulting plans. We then
describe a learning algorithm that automatically selects primary effects and demonstrate, both
analytically and empirically, that the use of this algorithm significantly reduces planning time
and does not compromise completeness.

FINAL REPORT 1993-1999) SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-27

3.2.21 Planning algorithms

Total-order planners perform backtracking search over all possible total-orderings, but their
commitment to a total order gives them a well-defined current state that can be used to guide the
search at later choice points. Partial-order planners handle operator orderings more efficiently,
but lack a current state. In such planners, an open condition can be linked to many steps (both
pre-existing and newly introduced). In earlier work, we showed how the lack of a current state
to give guidance at these choice points causes linkability difficulties. [de Silva 95] explores how
partial-order planners can maintain an approximation of the current state and use it to give
guidance at linkability choice-points. An inexpensive domain-independent heuristic selectively
delays linking commitments in a manner very similar to that in which a total-order planner hand-
les goals that are already satisfied in the current state. The heuristic, implemented in the partial-
order planner UCPOP, permits it to avoid linkability difficulties to some extent. In effect, the
heuristic embodies some of the strengths of total-order planners without inheriting their
weaknesses.

The Prodigy project is primarily concerned with the integration of planning and learning. Mem-
bers of the Prodigy research group have developed many learning algorithms for improving plan-
ning efficiency and plan quality, and for automatically acquiring knowledge about the properties
of planning domains. The details of the Prodigy planning algorithm, however, have not been
described in the literature. In [Fink and Veloso 95] we present a formal description of the plan-
ning algorithm used in the current version of the Prodigy system. The algorithm is based on an
interesting combination of backward-chaining planning with simulation of plan execution. The
backward-chainer selects goal-relevant operators and then the planner simulates the application
of these operators to the current state of the world. The system can use different backward-
chaining algorithms, two of which are presented in the paper.

3.2.22 Planning, learning, and search algorithms

The Pigeonhole Principle (PHP) has been one of the most appealing methods of solving com-
binatorial optimization problems. Variations of the Pigeonhole Principle, sometimes called the
‘‘Hidden’’ Pigeonhole Principle (HPHP), are even more powerful and often produce the most
elegant solutions to nontrivial problems. However, some OR approaches, such as Linear Pro-
gramming Relaxation (LPR), are strong competitors to PHP and HPHP. The OR approaches can
also be applied to combinatorial optimization problems to derive upper bounds. It has been an
open question whether PHP or LPR establish tighter upper bounds and how efficiently when
applied to the same problem. Challenged by this open question, we identify that the main reason
for the lack of ability to compare the efficiency of PHP and LPR is the fact that different
problem representations are required by the two methods.

In [Smirmov and Veloso 96] we introduce a method to change problem representation into an
integer programming form, allowing an alternative way to solve combinatorial problems. We
also introduce several combinatorial optimization problems and show how to perform represen-
tation changes to convert the original problems into the integer programming form. Using the
new problem model, we redefine the Pigeonhole Principle as a method of solving integer pro-
gramming problems, determine the difference between PHP and HPHP, prove that PHP has the
same bounding power as LPR (thus answering the above "open question”), and demonstrate that
HPHP and integer cuts are actually similar representation changes of the problem domains.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-28 INTEGRATED SOFTWARE ARCHITECTURES

If a state space is not completely known in advance, then search algorithms have to explore it
sufficiently to locate a goal state and a path leading to it, performing therefore what we call
goal-directed exploration. Two paradigms of this process are pure exploration and heuristic-
driven exploitation: The former approach explores the state space using only knowledge of the
physically visited portion of the domain, whereas the latter approach relies totally on heuristic
knowledge to guide the search towards goal states. Both approaches have disadvantages: The
first one does not utilize available knowledge to cut down the search effort, and the second one
relies too much on knowledge, even if such is misleading. We have developed a framework for
goal-directed exploration called VECA [Smirnov et al. 96] that combines the advantages of both
approaches by automatically switching from exploitation to exploration on parts of the state
space where exploitation does not perform well. VECA provides better performance guarantees
than previously studied heuristic-driven exploitation algorithms, and experimental evidence sug-
gests that this guarantee does not deteriorate average-case performance.

In addition, the work on formalizing the Prodigy algorithm, reported earlier, has now been
published as a book chapter [Fink and Veloso 96], thereby increasing its availability.

Recently, there has been an increasing interest in understanding the capabilities of different plan-
ners. While there has been some work done on comparing planning algorithms, relatively little
effort has been spent on planning domain representation. In [Perez et al. 96], we describe our
experience with converting hierarchical task network (HTN) domains into an operator-based
planner representation. We enumerate several features of the HTN representation and their cor-
responding definitions in the operator-based one. This work is based on an empirical study using
the SIPE and Prodigy domains. We address the general question of expressivity of each of these
planning frameworks and present a general, domain-independent transformation from a domain
representation of a formalized HTN planner into Prodigy. We identify the capabilities of Prodigy
that make this transformation feasible.

GSAT is a local hill-climbing procedure for solving propositional satisfiability problems. In

[Smirnov and Veloso 97] we restate it as a navigational search process performed on an N-
dimensional cube by a fictitious agent with limited lookahead. Several variations of GSAT have
been introduced and provide different levels of efficiency, hence raising the interesting question
of understanding the essence of their differing performance. We show how we use our naviga-
tional approach to investigate this issue. We introduce new algorithms that focus on specific
combinations of properties of efficient GSAT variants and help identify the relevance of the algo-
rithm features to the efficiency of the GSAT search. We derive fast approximating procedures
based on variable weights that can provide good switching points for a mixed search policy. Our
conclusions are validated by empirical evidence obtained from the application of several GSAT
variants to random 3SAT problem instances and to simple navigational problems.

The Prodigy system is based on bidirectional planning, which is a combination of goal-directed,
backward chaining with simulation of plan execution. Experiments have demonstrated that it is
an efficient technique; a fair match to other successful planning systems. The question of com-
pleteness of bidirectional planning, however, has remained unanswered. In [Fink and Blythe
97] we show that Prodigy is not complete and discuss the advantages and drawbacks of its in-
completeness. We then develop a complete bidirectional planner and compare it experimentally
with Prodigy. We demonstrate that the new planner is almost as efficient as Prodigy and can
solve more problems.

FINAL REPORT 1993-1999) SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-29

Choosing an appropriate problem-solving method from available methods is a crucial skill for
experts in many areas. In [Fink 97] we describe a technique for automatic selection among
methods, based on statistical analysis of their past performances. We formalize the statistical
problem involved in selecting an efficient problem-solving method, derive a solution to this
problem, and describe a method-selection algorithm. The algorithm not only chooses among
available methods, but also decides when to abandon the chosen method if it proves too slow.
We give empirical results on the use of this technique in selecting among search engines in the
Prodigy problem-solving system.

3.2.23 Probabilistic planning
Probabilistic back-chaining planners, which use probabilities to represent and reason about un-
certainty in the planning domain, typically have a larger search space than their classical counter-
parts. Therefore, heuristics that can reduce their search effectively are even more important. The
““footprint’” principle leads to a family of heuristics for probabilistic planners produced by at-
tempting to make subsequent refinements to a plan apply to disjoint sets of planning cases. In
[Blythe 95] heuristics derived by this principle are shown to be effective for two probabilistic
planners, Buridan and Weaver, which are organized around quite different search techniques.
Probabilistic planners are needed that can use more compact representations of uncertainty than
those that currently exist, and these planners will depend even more on the footprint principle
and others like it.

An increasing number of planners can handle uncertainty in the domain or in action outcomes.
However, less work has addressed building plans when the planner’s world can change, indepen-
dently of the planning agent, in an uncertain manner. In [Blythe 96a] we model this change with
external events that concisely represent some aspects of structure in the planner’s domain. This
event model is given a formal semantics in terms of a Markov chain, but probabilistic computa-
tions from this chain would be intractable in real-world domains. We describe a technique, based
on a reachability analysis of a graph built from the events, that allows abstractions of the Markov
chain to be built to answer specific queries efficiently. We prove that the technique is correct.
We have implemented a planner that uses this technique, and show an example from a large
planning domain.

An important direction for Al planning systems is to handle dynamic domains—domains where
changes take place that are not the direct result of the actions of the agent, and where the world
describes a state trajectory in the absence of any actions from the planning agent. In many real-
world planning problems, for example, change to the world takes place due to other agents, or
due to forces of nature over time. The planning agent may have limited control over these exter-
nal events, and limited knowledge about both events that have occurred and events that may
occur in the future.

The aim of [Blythe 96b] is twofold: To give an account of an action model for dynamic domains
that is used in an implemented planner, and to show how issues of representational power and
computational efficiency jointly influenced the model. A model for dynamic domains for plan-
ners should have at least the following three features: First, the planner should be able to take
advantage of possible events, incorporating them into a plan as appropriate. Second, the model
should allow the planner to reason about a set of different possible futures, each being consistent
with the agent’s knowledge of events. Third, the planner should be able to efficiently determine

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-30 INTEGRATED SOFTWARE ARCHITECTURES

any events that may effect candidate partial plans, and obtain information that may allow a
modified plan to be made safe from the events.

Probabilistic and nondeterministic aspects complicate planning in many domains. Weaver is a
hybrid planning algorithm we’ve developed that can create plans in domains that include uncer-
tainty, modelled either as incomplete knowledge of the initial state of the world, of the effects of
plan steps or of the possible external events. The plans are guaranteed to exceed some given
threshold probability of success. Weaver creates a Bayesian network representation of a plan to
evaluate it, in which links corresponding to sequences of events are computed with Markov
models. As well as generating the probability of success, evaluation identifies a set of flaws in
the candidate plan, which are then used by the planner to improve the plan. In [Blythe and
Veloso 96] we describe a learning method that generates control knowledge compiled from this
probabilistic evaluation of plans. The output of the learner is search control knowledge for the
planning domain that helps the planner select alternatives that have previously lead to plans with
high probability of success. The learned control knowledge is incrementally refined by com-
bined deductive and inductive reasoning.

Inaccessible and nondeterministic environments are common in realworld problems. One of the
difficulties in these environments is representing the knowledge about the unknown aspects of
the state. In [Bowling et al. 96] we present a solution to this problem for one such domain,
robotic soccer. We developed a predictive memory model that builds a probabilistic represen-
tation of the state based on past observations. By making the right assumptions, we can create an
effective model that can store and update knowledge for even the inaccessible parts of the en-
vironment. We conducted experiments to compare the effectiveness of our approach with a
simpler approach, which ignored the inaccessible parts of the environment. The experiments
consisted of using the memory models in a "free ball" situation, where two players race for the
ball to pass or kick it to one of their teammates or the goal. The results obtained demonstrate
that this predictive approach does generate an effective memory model that outperforms a non-
predictive model.

The work on heuristics for Probabilistic planners, reported earlier, has been published as a book
chapter, [Blythe 96c¢].

Several recent planners can create conditionally branching plans to solve problems involving
uncertainty. These planners represent an important step in broadening the applicability of Al
planning techniques, but they typically must search a larger space than nonbranching planners,
since they must produce valid plans for each branch considered. In the worst case this situation
can produce an exponential increase in the complexity of planning. If conditional planners are to
become usable in real-world domains, this complexity must be controlled by sharing planning
effort among branches. Analogical plan reuse should play a fundamental role in this process. In
[Blythe and Veloso 97] we describe a conditional probabilistic planner that uses analogical plan
replay to derive the maximum benefit from previously solved branches of the plan. This ap-
proach provides valuable guidance for when and how to merge different branches of the plan,
and exploits the high similarity between different branches in a conditional plan that have the
same goal and, typically, a similar state. Analogical replay can be applied to a variety of con-
ditional planners, complementing the plan sharing that they may perform naturally. We present
experimental data in which analogical plan replay significantly reduces the complexity of con-
ditional planning.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-31

3.2.24 Interleaving planning and execution

[Haigh and Veloso 96b] describes Rogue, an integrated planning and executing robotic agent.
Rogue is designed to be a roving office "gopher" unit, doing tasks such as picking up and
delivering mail or returning and picking up library books, in a configuration where users can
post tasks for the robot. We have been working towards a completely autonomous agent that can
learn from its experience and improve upon its own behavior with time. The paper describes
what we have achieved to-date: (1) a system that can generate and execute plans for multiple,
interacting goals (that arrive asynchronously and whose task structure is not known beforehand),
interrupting and suspending tasks when necessary, and (2) a system that can compensate for
minor problems in its domain knowledge, monitoring execution to determine when actions did
not achieve expected results and replanning to correct failures.

The work on user-guided interleaving of planning and execution, reported earlier, has now been
published as a book chapter, [Stone and Veloso 96a].

3.2.25 Collaborative, mixed-initiative and adversarial planning

[Veloso 96b] introduces our work on mixed-initiative, rationale-supported planning. The work
centers on the principled reuse and modification of past plans by exploiting their justification
structure. The goal is to record as much as possible of the rationale underlying each planning
decision in a mixed-initiative framework where human and machine planners interact. This
rationale is then used to determine which past plans are relevant to a new situation, to focus the
user’s modification and replanning on different relevant steps when external circumstances dic-
tate, and to ensure consistency in multi-user distributed scenarios. We build upon our previous
work in Prodigy/Analogy, which incorporates algorithms to capture and reuse the rationale of an
automated planner during its plan generation. To support a mixed-initiative environment, we
have developed user interactive capabilities in the Prodigy planning and learning system. We are
also working towards the integration of the rationale-supported plan reuse in Prodigy/Analogy
with the plan retrieval and modification tools of ForMAT. Finally, we have focused on the user’s
input to the plan reuse process, in particular when conditional planning is needed.

Distributed Artificial Intelligence (DAI) is concerned with systems that consist of multiple, inde-
pendent entities that interact in a domain, and has existed as a subfield of Al for less than two
decades. Traditionally, DAI has focussed on the information management aspects of these sys-
tems. But in the past few years, a subfield of DAI focussing on behavior management, as op-
posed to information management, has emerged. This young subfield is called Multiagent Sys-
tems (MAS). In [Stone and Veloso 96b] we present a survey of MAS intended to serve as an
introduction to the field and as an organizational framework. It contains guidelines for when and
how MAS should be used to build complex systems. A series of increasingly complex general
multiagent scenarios are presented. For each scenario the issues that arise are described along
with a sampling of the techniques that exist to deal with them. The presented techniques are not
exhaustive, but they highlight how multiagent systems can be and have been used to build com-
plex systems. When options exist, the techniques presented are biased towards Machine Learn-
ing approaches. Additional opportunities for applying Machine Learning to MAS are high-
lighted and robotic soccer is presented as an appropriate testbed for MAS.

Soccer is a rich domain for the study of multiagent learning issues. Not only must the players

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-32 INTEGRATED SOFTWARE ARCHITECTURES

learn low-level skills, but they must also learn to work together and to adapt to the behaviors of
different opponents. We are using a robotic soccer system to study these different types of mul-
tiagent learning: low-level skills, collaborative, and adversarial. In [Stone and Veloso 96¢] we
describe in detail our experimental framework. We present a learned, robust, low-level behavior
that is necessitated by the multiagent nature of the domain, namely "shooting" a moving ball.
We then discuss the issues that arise as we extend the learning scenario to require collaborative
and adversarial learning.

Mixed-initiative settings, where both human and machine are intimately involved in the planning
process, pose several challenges for traditional planning frameworks. In [Cox and Veloso

97] we examine the types of unexpected goals that a human may give to the underlying planning
system, and thereby how humans change the way planning must be performed. Users may want
to achieve goals in terms of actions as well as states, they may specify goals that vary along a
dimension of abstraction and specificity, and they may mix both top-level goals and subgoals
when describing what they want a plan to do. We show how the Prodigy planning system has
met these challenges when integrated with a force deployment tool called ForMAT and describe
what opportunities this merger offers a generative planning framework.

Human planners rely strongly on past planning experience to generate new plans. FOrMAT is a
case-based system that supports human planning through the accumulation of user-build plans,
query-driven browsing of past plans, and several plan-functionality-analysis primitives.
Prodigy/Analogy is an automated Al planner that combines generative and case-based planning.
Stored plans are automated with plan rationale and re-use involves adaptation driven by this
rationale. Our system, MI-CBP, integrates ForMAT and Prodigy/Analogy into a realtime,
message-passing, mixed-initiative system [Veloso et al 97a]. The main technical approach con-
sists of allowing the user to specify and link objectives that enable the system to capture and
reuse plan rationales. We present MI-CBP and its concrete application to the domain of military
force deployment planning. The synergetic system increases the planning efficiency of human
planners through automated suggestion of similar past plans and plausible plan modifications.

In the past few years, the area of multiagent systems has emerged as an active subfield of Al
There is much interest in using machine learning techniques to address the inherent complexity
of multiagent systems. Robotic soccer is a particularly good domain for studying multiagent
learning. Our approach to using multiagent learning as a tool for building Soccer Server clients
involves layering increasingly complex learned behaviors. In [Stone and Veloso 96d] we
describe two levels of learned behaviors. First, the clients learn a low-level individual skill that
allows them to control the ball effectively. Then, using this learned skill, they learn a higher-
level skill that involves multiple players. For each skill, we describe the learning method in
detail and report on our extensive empirical testing.

[Stone et al 96] details the hard-coded functionality of the Robotic Soccer agents, the perception
model used, and the behaviors acquired by learning.

We describe in [Veloso et al 97b] the architecture of the physical system used in Robotic Soccer
and the way actions are layered, building upon each other to create strategic reasoning. We have
been using realistic simulation environments to learn basic collaborative strategic procedures.
Our ongoing research consists of extending and applying these robust strategic templates to the
physical agents. Our approach structures the deliberation and reaction as a layered learning ar-

FINAL REPORT 1993-1999 A SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-33

chitecture. Other efforts have been pursued on applying learning to acquire specific behaviors in
different setups. We have chosen to focus on producing a simple, robust design that will enable
us to concentrate our efforts.

In [Stone and Veloso 97] we present a novel technique for agent control in a complex multiagent
domain based on the confidence factors provided by the C4.5 Decision Tree algorithm. Using
Robotic Soccer as an example of such a domain, we incorporated a previously-trained Decision
Tree into a full multiagent behavior that is capable of controlling agents throughout an entire
game. Along with using Decision Trees for control, this behavior also makes use of the ability to
reason about action-execution time to eliminate options that would not have adequate time to be
executed successfully. The newly created behavior was tested empirically in game situations.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-34 INTEGRATED SOFTWARE ARCHITECTURES

3.3 Bibliography

[Achim et al. 96]
Achim, S., P. Stone, and M.M. Veloso.
Building a Dedicated Robotic Soccer System.
In Working Notes of the IROS-96 Workshop on RoboCup. November, 1996.

[Altmann 96]
Altmann, E.
Episodic Memory for External Information.
Technical Report , School of Computer Science, Carnegie Mellon University, CMU-
CS-96-167,
1996.

[Altmann et al. 95]
Altmann, EM., J.H. Larkin, and B.E. John.
Display navigation by an expert programmer: A preliminary model of memory.
In Human Factors in Computing Systems: Proceedings of CHI '95. CHI, 1995.

[Bergmann et al. 96]
Bergmann, R., H. Munoz-Avila, and M.M. Veloso.
General-Purpose Case-Based Planning: Methods and systems.
Kuenstliche Intelligenz1:22-28, 1996.
In German.

[Blythe 94a]
Blythe, J.
Planning with external events.
In Ramon Lopez de Mantaras and David Poole (editors), Proceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence. AAAI, July, 1994.

[Blythe 94b]
Blythe, J.
Decision-theoretic subgoaling for planning with external events.
In Working Notes of the AAAI 1994 Spring Symposium Series, Workshop on Decision-
Theoretic Planning. AAAI, March, 1994.

[Blythe 94c]
Blythe, J.
Probabilistic knowledge of external events in planning.

In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. AAAI,
1994.

[Blythe 95]
Blythe, J.
Al Planning in Dynamic, Uncertain Domains.
In Proceedings of the AAAI Spring Symposium on Extending Theories of Action. Stanford,
March, 1995.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-35

[Blythe 96a]
Blythe, J.
Decompositions of Markov Chains for Reasoning about External Change in Planners.
In B. Drabble (editor), Proceedings of the Third International Conference on Artificial Intel-
ligence Planning Systems. AAAI Press, University of Edinburgh, May, 1996.

[Blythe 96b]
Blythe, J.
Efficient Planning in Dynamic Domains with ADL-like External Events.
1996.
Submitted to the AAAI workshop on Theories of Action, Planning and Control: Bridging the
Gap.

[Blythe 96¢]
Blythe, J.
The Footprint Principle for Heuristics for Probabilistic Planners.
In Ghallab, M., and A. Milani (editors), New Directions in AI Planning, pages 173-185. 10S
Press, 1996.

[Blythe and Reilly 93]
Blythe, J. and W.S. Reilly.
Integrating reactive and deliberative planning in a household robot.
In Working Notes of the AAAI 1993 Fall Symposium Series, Svmposmm on Instantiating Real-
world Agents. October, 1993.

[Blythe and Veloso 96]
Blythe, J., and M.M. Veloso.
Learning to Improve Uncertainty Handling in a Hybrid Planning System.
In AAAI Fall Symposium. AAAI Press, Menlo Park, CA, November, 1996.
To appear.

[Blythe and Veloso 97]
Blythe, J., and M.M. Veloso.
Analogical Replay for Efficient Conditional Planning.
In Proceedings of the National Conference on Artificial Intelligence. 1997.
Submitted.

[Blythe et al. 96]
Blythe, J., M.M. Veloso, and L.E. de Souza.
The Prodigy User Interface.
1996.
Submitted to the XIIIth Brazilian Symposium on Artificial Intelligence.

[Borrajo and Veloso 94]
Borrajo, D. and M. Veloso.
Incremental learning of control knowledge for nonlinear problem solving.
In Proceedings of the European Conference on Machine Learning, ECML-94. ECML, April,
1994.

[Borrajo and Veloso 96]
Daniel Borrajo and Manuela M. Veloso.
Lazy Incremental Learning of Control Knowledge for Efficiently Obtaining Quality Plans.
Journal of Artificial Intelligence Review, in press, forthcoming 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-36 INTEGRATED SOFTWARE ARCHITECTURES

[Bowling et al. 96]
Bowling, M., P. Stone, and M.M. Veloso.
Predictive Memory for an Inaccessible Environment.
In Working Notes of the IROS-96 Workshop on RoboCup. November, 1996.

[Cox and Veloso ’97]
Cox, M.T., and M.M. Veloso.
Controlling for Unexpected Goals when Planning in a Mixed-Initiative Setting.

In Proceedings of the National Conference on Artificial Intelligence. 1997.
Submitted.

[de Silva 94]
de Silva, R.
Goal-clobbering avoidance in nonlinear planners.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI94, Student
Poster Session. AAA], August, 1994.

[de Silva 95]
de Silva, R.
Selectively Delaying Linking Commitments in Partial-order Planners.
In Proceedings of the Third European Workshop on Planning. September, 1995.

[Doorenbos 94]
Doorenbos, R.
Combining left and right unlinking for matching a large number of learned rules.
In Proceedings of the Twelfth National Conference on Artificial Intelligence. AAAI 1994.
An expanded version appears as technical report CMU-CS-94-132.

[Doorenbos 95]
Doorenbos, R.B.
Production matching for large learning systems.
PhD thesis, Computer Science Department, Carnegie Mellon University, 1995.

[Doorenbos and Veloso 93]
Doorenbos, R.B. and M.M. Veloso.
Knowledge organization and the utility problem.
In Proceedings of the Third International Workshop on Knowledge Compilation and Speedup
Learning. 1993.

[Fink 95a]
Fink, E.
Design of representation-changing algorithms.
Technical Report CMU-CS-95-120, School of Computer Science, Camnegie Mellon Univer-
sity,)
1995.

[Fink 95b]
Fink, E.
Systematic approach to the design of representation-changing algorithms.
In Proceedings of the Symposium on Abstraction, Reformulation, and Approximation. 1995.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 3-37

[Fink 97]
Fink, E.
How to Solve it Automatically: Selection among Problem-Solving Methods.
In Proceedings of the International Conference on Machine Learning. 1997.
Submitted.

[Fink and Blythe 97]
Fink, E., and J. Blythe.
Rasputin: A Complete Bidirectional Planner.
In Proceedings of the International Joint Conference on Artificial Intelligence. 1997.
Submitted.

[Fink and Veloso 94]
Fink, E. and M.M. Veloso.
Prodigy planning algorithms.
Technical Report CMU-CS-94-123, Computer Science Department Carnegie Mellon Univer-
sity,
1994.

[Fink and Veloso 95]
Fink, E., and M.M. Veloso.
Formalizing the Prodigy Planning Algorithm.
In Proceedings of the Third European Workshop on Planning. September, 1995.

[Fink and Veloso 96]
Fink, E., and M.M. Veloso.
‘Formalizing the Prodigy Planning Algonthm
In M. Ghallab and A. Milani (editors), New Directions in Al Planning, pages 261--272. 10S
Press, 1996.
An earlier, extended version is available as technical report CMU-CS-94-123, 1994.

[Fink and Yang 94a]
Fink, E. and Q. Yang.
Search reduction in planning with primary effects.
In Proceedings of the Workshop on Theory Reformulation and Abstraction. 1994.

[Fink and Yang 94b]
Fink, E. and Q. Yang.
Automatically selecting and using primary effects in planning: theory and experiments.
Technical Report CMU-CS-94-206, Computer Science Department, Carnegie Mellon Univer-
sity,
1994.

[Fink and Yang 95]
Fink, E., and Q. Yang.
Planning with primary effects: Experiments and analysis.
In Proceedings of the International Joint Conference on Artificial Intelligence. 1995.

[Fink and Yang 96]
Fink, E., and Q. Yang.
Automatically Selecting and Using Primary Effects in Planning: Theory and Experiments.
Al Journal, 1996.
To appear.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-38 ' . INTEGRATED SOFTWARE ARCHITECTURES

[Gil and Perez 94]
Gil, Y. and M.A. Perez.
Applying a general-purpose planning and learning architecture to process planning.
In Proceedings of the AAAI 1994 Fall Symposium Series, Symposium on Planning and Learn-
ing: On to Real Applications. AAAI, November, 1994,

[Green and Lehman 96a]
Green, N., and J.F. Lehman.
An Approach to Compiling Knowledge for Dialogue Generation and Interpretation.
In Proceedings of the Thirty-fourth Annual Meeting of the Association for Computational
Linguistics. 1996.

[Green and Lehman 96b]
Green, N., and J.F. Lehman.
Goals for Future Computational Models of Conversational Implicature.
In Proceedings of the 1996 AAAI Spring Symposium on Computational Implicature. 1996.

[Green and Lehman 96¢)
Green, N., and J.F. Lehman.
Comparing Agent Modeling for Language and Action.

In Agent Modeling: Papers from the 1996 AAAI Workshop, Technical Report WS-96-02.
1996.

[Green and Lehman 96d]
Green, N., and J.F. Lehman.
Compiling Knowledge for Dialogue Generation and Interpretation.

Technical Report , School of Computer Science, Carnegie Mellon University, CMU-
CS-96-175,
1996.

[Green and Lehman 97]
Green, N., and J.F. Lehman.
An Integrated Architecture for Discourse: Generation, Interpretation, and Recipe Acquisition.

In Proceedings of the Fourteenth National Conference on Artificial Intelligence. 1997.
Submitted.

[Haigh and Shewchuk 94]
Haigh, K.Z. and J.R. Shewchuk.
Geometric similarity metrics for case-based reasoning.
In Case-Based Reasoning: Working Notes from the AAAI-94 Workshop. AAAL, August, 1994,

[Haigh and Veloso 95]
Haigh, K.Z., and M.M. Veloso.
Route Planning by Analogy. :
In Manuela Veloso and Agnar Aamodt (editors), Case-Based Reasoning Research and

Development, Proceedings of ICCBR-95, pages 169-180. Springer-Verlag, Sisembra, Por-
tugal, October, 1995.

Available at http://www.cs.cmu.eduw/khaigh/papers.html.

|
FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH ‘

INTEGRATED SOFTWARE ARCHITECTURES ' 3-39

[Haigh and Veloso 96a]
Haigh, K.Z., and M.M. Veloso.
Planning with Multiple Goals for Robot Execution.
In Proceedings of the AAAI Fall Symposium *‘Plan Execution: Problems and Issues”’. AAAI
Press, Menlo Park, CA, November, 1996.
To appear.

[Haigh and Veloso 96b]
Haigh, K.Z., and M.M. Veloso.
Interleaving Planning and Robot Execution for Asynchronous User Requests.
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS).
November, 1996.
To Appear. Also appeared in Proceedings of the AAAI Spring Symposium, ‘‘Planning with
Incomplete Information for Robot Problems’’, March. 1996.

[Haigh and Veloso 96¢]
Haigh, K.Z., and M.M: Veloso.
Using Perception Information for Robot Planning and Execution.
In Proceedings of the AAAI Workshop ‘‘Intelligent Adaptive Agents'’, pages 23-32. AAAI
Press, Menlo Park, CA, August, 1996.

[Haigh and Veloso 97a] .
Haigh, K.Z., and M.M. Veloso.
Hloh Level Planning and Low-Level Execution: Towards a Complete Robotic Agent.
In Proceedmgs of the First International Conference on Autonomous Agents. 1997

[Haigh and Veloso 97b]
Haigh. K.Z., and M.M. Veloso.
Identifying and Using Learning Opportunities From Robot Execution.
In Proceedings of tlze Intematz(mal Conference on Machine Learning. 1997.
Submitted.

[Haigh et al. 94]
Haigh, K.Z., J.R. Shewchuk, and M.M. Veloso.
Route planning and learning from execution.
In Working notes from the AAAI Fall Symposium on Planning and Learning: On to Real
Applications. AAAI, November, 1994.

[Haigh et al. 96]
Haigh, K.Z., M.M. Veloso, and J.R. Shewchuk.
Exploiting Domain Geometry in Analogical Route Planning.
Journal of Experimental and Theorettcal Artificial Intellzgence 1996.
To appear.

[Laird et al. 95]
Laird, J. E., Johnson, W. L., Jones, R. M., Koss, F., Lehman, J. F., Nielsen, P. S.,
Rosenbloom, P. S., Rubinoff, R., Schwamb, K. B., and Tambe, M.
Simulated Intelligent Forces for Air: The Soar/IFOR Project 1995.
In Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral
Representation, pages 27-36. 1995.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

340 INTEGRATED SOFTWARE ARCHITECTURES

[Lehman 94]
Lehman, J.F.
Towards the essential nature of statistical knowledge in sense resolution.
In Proceedings of the Twelfth National Conference on Artificial Intelligence. AAAL 1994.

[Lehman et al. 95]
Lehman, J. F., Van Dyke, J., and Rubinoff, R.
Natural Language Processing for IFORS: Comprehension and Generation in the Air Combat
Domain.
In Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral
Representation, pages 115-123. 1995.

[Lewis 93]
Lewis, R. L.
An architecturally-based theorv of human sentence comprehension.
PhD thesis, Computer Science Department. Carnegie Mellon University, 1993.
Also available as Technical Report CMU-CS-93-226.

[Lonsdale 96a]
Lonsdale, D.
An Architectural Theory for Simultaneous Interpretation.
In Proceedings of the Canadian Association of Applied Linguistics. 1996.

~ [Lonsdale 96b]

Lonsdale, D. .
Cognitive Modelling of Simultaneous Interpretation.
In Proceedings of the Colloque Etudiant de Linguistique Informatique de Montreal. 1996.

[Lonsdale 97]
Lonsdale, D.
Modelling SI Cognition: A UTC-Based Approach.
Interpreting: International Journal of Reseurch and Practice in Interpreting2, 1997.

[Melis and Veloso 94]
Melis, E. and M. Veloso.
Analogy makes proofs feasible.
In Preprints of the AAAI Workshop on Case-based Reasoning. AAAL August, 1994.

[Nelson et al. 94a]
Nelson, G., J.F. Lehman, and B.E. John.
Experiences in interruptible language processing.
In Proceedings of the 1994 AAAI Spring Symposium on Active NLP. 1994.

[Nelson et al. 94b]
Nelson, G., J.F. Lehman, and B.E. John.
Integrating cognitive capabilities in a real-time task.
In Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. CSS,
1994,

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES : 341

[Newell et al. 91]
Newell, A., G.R. Yost, J.E. Laird, P.S. Rosenbloom, and E. Altmann.
Formulating the problem space computational model.
In R.F. Rashid (editor), Carnegie Mellon Computer Science: A 25-Year Commemorative.
ACM-Press: Addison-Wesley, 1991.

[Pelton and Lehman 94]
Pelton, G. and J.F. Lehman.
The breakdown of operators when interacting with the external world. . '
Technical Report CMU-CS-94-121, Computer Science Department, Carnegie Mellon Univer-
sity,
February, 1994.

[Pelton and Lehman 95]
Pelton, G. A. and Lehman, J. F.
Everyday Believabiliry.
Technical Report , School of Computer Science, Camegie Mellon University, CMU-
CS-95-133,
1995.

[Pelton and Lehman 96]
Pelton, G. A., and J.F. Lehman.
Being effective when suspending goals. ‘
In Proceedings of AAAI Workshop on Plan Execution: Problemv and Issues. 1996.

[Perez 94a]
Perez. M.A.
Learning quality-enhancing control knowledge.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI94, Student
Poster Session. AAAI August, 1994,

[Perez 94b]
Perez, M.A.
The goal is to generate better plans.
In Working Notes of the AAAI 1994 Spring Symposium Series, Workshop on Goal-Driven
Learning. AAAI March, 1994,

[Perez 94c]
Perez, M.A.
Aprendizaje automatico en los sistemas de planificacion.
In Invited Lecture at the VIth International Symposium, Systems: Transition towards Automa-
tion, Universidad Autonoma de Coahuila, Mexico. March, 1994,

[Perez 95]
Perez, M.A.
Learning Search Control Knowledge to Improve Plan Quality.
PhD thesis, Computer Science Department, Carnegie Mellon University, 1995.
Available as technical report CMU-CS-95-175.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-42 INTEGRATED SOFTWARE ARCHITECTURES

[Perez 96]
Perez, M.A.
Learning from a Domain Expert to Generate Good Plans.
In Proceedings of the AAAI Spring Symposium *‘Acquisition, Learning and Demonstration:
Automating Tasks for Users’’, pages 110-116. AAAI Press, March, 1996.

[Perez and Carbonell 94]
Perez, M.A. and J.G. Carbonell.
Control knowledge to improve plan quality.
In Proceedings of the Second International Conference on Al Planning Systems, AIPS-94.
AIPS, June, 1994.

[Perez et al. 96]
Perez. A., J. Blythe, and M.M. Veloso.
Comparing the Representational Power of Operator-Based and HTN Planners.
In Proceedings of AAAI '96. 1996.
Submitted. '

[Rubinoff and Lehman 94]
Rubinoff, R. and J.F. Lehman.
Real-time natural language generation in NL-Soar.
In Proceedings of the 7th International Workshop on Natural Language Generation. 1994.

[Smirnov and Veloso 96)
Smimov, Y., and M.M. Veloso.
Efficiency Competition through Representation Changes: Pigeonhole Principle versus Linear
Programming Relaxation. .
In Proceedings of KR’96, the Fifth International Conference on Principles of Knowledge
Representation and Reasoning. November. 1996.

[Smimov and Veloso 97]
Smimoyv, Y., and M.M. Veloso.
GSAT: A Navigational Approach.
In Proceedings of the National Conference on Artificial Intelligence. 1997.
Submitted.

[Smimov et al. 96]
Smimov, Y., S. Koenig, M.M. Veloso. and R. Simmons.
Efficient Goal-Directed Exploration.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
292-297. August, 1996.

[Smith and Lehman 97]
Smith, M., and J.F. Lehman.
Natural Language Communication by Intelligent Agents in an Air Combat Domain.
In Proceedings of the 1997 Symposium on Aviation Communication, Embry-Riddle Aeronauti-
cal University. 1997.

[Soar 94]
The Soar Group.
The Soar Project.
In Proceedings of Soar Workshop XIII. Ohio State University, 1994.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTW ARE ARCHITECTURES 343

[Souza and Veloso 96a]
Souza, L.E., and M.M. Veloso.
Al Planning for a Supervisory Control System.
In Proceedings of the 1996 IEEE International International Conference on Systems, Man and
Cybernetics. China, October, 1996.

[Souza and Veloso 96b]
Souza, L.E., and M.M. Veloso.)
Acquisition of Flexible Planning Knowledge from Means-ends Models for Industrial Proces-
ses.
IEEE Transactions on Knowledge and Data Engineering (TKDE), June, 1996.

[Souza and Veloso 96¢]
Souza, L.E., and M.M. Veloso.
Flexible Planning Knowledge Acquisition for Industrial Processes.
In Proceedings of the First International Conference on Industrial Engineering Applications
and Practice. Houston, TX, December, 1996.

[Stone and Veloso 94a]
Stone, P. and M. Veloso.
The need for different domain-independent heuristics.
In Proceedings of the Second International Conference on Al Plamzmg Svstems. June, 1994.

[Stone and Veloso 94b]
Stone, P. and M.M. Veloso.
Learning to solve complex planning problems finding useful auxiliary problems.
In Technical Report of the AAAI 1994 Fall Symposium on Planning and Learning: On to Real
Applications. AAAIL November, 1994.

[Stone and Veloso 95)
Stone, P., and M.M. Veloso.
User-guided Interleaving of Planning and Execution.
In Proceedings AAAI Sprmg Symposium on Information Gathering from Heterogeneous, Dis-
tributed Environments, 1995. September, 1995.

[Stone and Veloso 96a]
Stone, P., and M.M. Veloso.
User-guided Interleaving of Planning and Execution.
In M. Ghallab and A. Mllam (editors), New Directions in Al Planning, pages 103--112. 10§
Press, 1996.
Proceedings of the European Workshop on Planning.

[Stone and Veloso 96b]
Stone, P., and M.M. Veloso.
Multiagent Systems: A survey from a machine learning perspective.
IEEE Transactions on Knowledge and Data Engineering (TKDE), June, 1996.

[Stone and Veloso 96¢]
Stone,P., and M.M. Veloso.
Towards Collaborative and Adversarial Learning: A Case Study in Robotic Soccer.
To appear in International Journal of Human-Computer Systems (IJHCS), 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

344 INTEGRATED SOFTWARE ARCHITECTURES

[Stone and Veloso 96d]
Stone, P.. and M.M. Veloso.
Using Machine Learning in the Soccer Server.
In Proceedings of the IROS-96 Workshop on RoboCup. 1996.

[Stone and Veloso 97]
Stone, P., and M.M. Veloso.
Using Decision Tree Confidence Factors for Agent Control.
In Proceedings of the International Joint Conference on Artificial Intelligence. 1997.
Submitted.

[Stone et al 96}
Stone. P., M.M. Veloso, and S. Achim.
Collaboration and Learning in Robotic Soccer.
In Proceedings of the Micro-Robot World Cup Soccer Tournament. IEEE Robotics and
Automation Society, 1996.

[Van Dyke and Lehman 97]
Van Dyke, J.. and J.F. Lehman.
A Process Model of Learning Definiteness in a Foreign Language.
In Proceedings of the Nineteenth Cognitive Science Sociery. 1997.
Submitted.

[Veloso 96a]
David B. Leake (editor).
Flexible Strategy Learning: Analogical Replay of Problem Solving Episodes.
AAAI Press/The MIT Press, 1996.
Book version of the paper presented in the Twelfth National Conference on Artificial Intel-
ligence, AAAI Press, 1994. .

[Veloso 96b]
Veloso, MM.
Towards Mixed-Initiative Rationale-Supported Planning.
In A. Tate (editor), Advanced Planning Technology, pages 277-282. AAAI Press. 1996.

[Veloso and Aamodt 96]
Veloso, M.M.. and A. Aamodt (editor).
Case-Based Reasoning Reseurch and Development.
Springer Verlag, 1996.

[Veloso and Blythe 94]
Veloso, M. and Blythe, J.
Linkability: Examining causal link commitments in partial-order planning.
In Proceedings of the Second International Conference on Al Planning Svstems. June, 1994.

[Veloso and Stone 95]
Veloso, M.M. and P. Stone.
FLECS: planning with a flexible commitment strategy.
Journal of Artificial Intelligence Research, 1995.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTEGRATED SOFTWARE ARCHITECTURES 345

[Veloso et al 97a]
Veloso. M.M., A M. Mulvehill, and M.T. Cox.
Rationale-Supported Mixed-Initiative Case-Based planning.
In Proceedings of the Innovative Applications of Artificial Intelligence Conference. 1997.
Submitted.

[Veloso et al 97b]
Veloso, M.M., P. Stone, S. Achim.
A Layered Approach for an Autonomous Robotic Soccer System.
In Proceedings of the First International Conference on Autonomous Agents. 1997.

[Veloso et al. 95]
Veloso, M.M., J.G. Carbonell, M.A. Perez. D. Borrajo, E. Fink, and J. Blythe.
Integrating planning and learning: The Prodigy architecture.
Journal of Experimental and Theoretical Artificial Intelligence7(1):81-120, 1995.

[Wang 94a]
Wang, X.
Learning planning operators by observation and practice.
In Proceedings of the Second International Conference on Al Planning Systems, AIPS-94.
AIPS. June, 1994,

[Wang 94b]
Wang, X. , .
Learning by observation and practice: A framework for automatic acquisition of planning
operators.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI94, Student
Poster Session. AAAI, August, 1994.

[Wang 95]
Wang, X. _
Learning by Observation and Practice: An Incremental Approach for Planning Operator Ac-
quisition.
In Proceedings of the 12th International Conference on Machine Learning. 1995.

[Wang 96]
Wang, X.
Planning While Learning Operators.
In Proceedings of the Third International Conference on Artificial Intelligence Planning
Systems. University of Edinburgh, 1996.

[Wang and Carbonell 94]
Wang, X. and J.G. Carbonell.
Learning by observation and practice: towards real applications of planning systems.
In AAAI-94 Fall Symposium Series: Planning and Learning: On to Real Applications. AAAL
1994. ‘

[Wang and Veloso 94]
Wang, X. and M. Veloso.
Learning planning knowledge by observation and practice.
In Proceedings of the ARPA Planning Workshop. ARPA, February, 1994.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

3-46 INTEGRATED SOFTWARE ARCHITECTURES

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS 4-1

4. Machine Learning in Large Scale Software Environments

Our research in Machine Learning sought to develop and demonstrate useful learning
capabilities within significantly sized software systems, such as autonomous robots. This work
requires scaling up previous learning algorithms by (1) extending them to handle more complex
learning tasks while still using realistic amounts of training data and (2) integrating learning al-
gorithms into domain-specific software architectures for robot planning and control, so that they
apply uniformly to applications within the architecture.

We have taken the approach of developing and demonstrating learning capabilities for mobile
robots and other large software systems. Our three main thrusts are: (1) developing and charac-
terizing specific algorithms for machine learning. (2) developing robot systems on an underlying
general architecture called TCA, which is in use by a variety of fielded robot systems at Carnegie
Mellon and elsewhere, and (3) integrating these learning techniques within TCA so that they are
invoked automatically by the architecture as part of routine robot operation.

4.1 Reliable indoor navigation

We performed extensive experiments in reliable indoor navigation. We developed passive, un-
supervised, realtime learning techniques to refine probabilistic models of the robot’s sensors and
the environment. We developed algorithms that learn to classify objects and estimate 3D posi-

- tion using single-frame color images. We have been working on combining RAPs and TCA,

transforming RAP expressions into code that utilizes the TCA library of control constructs. We
also developed and evaluated a new learning algorithm that enables a mobile robot to discover
landmarks on its own and pursued our research on “lifelong learning” algorithms for accurately
learning to recognize entire families of objects. We improved our previous methods for learning
metric, two-dimensional robot maps and invented a new method for learning topological maps,
which method was found to reduce the motion planning time by several orders of magnitude. A
prototype cleaning robot developed in our lab tied for first prize at the AAAI mobile robot com-
petition, and a major commercial robot manufacturer now distributes Carnegie Mellon-
developed software as its sole navigation software.

We had previously developed a navigation system that uses partially observable Markov deci-
sion process (POMDP) models to track robot position and control the robot. The probabilistic
information allows the robot to navigate more reliably and facilitates learning to improve the
robot’s models and to detect failures. We worked to to integrate our probabilistic navigation and
landmark discovery work, in order to enable the robot to learn new landmarks in exactly those
areas where it robot finds it has trouble navigating. We did work in visual learning, including
finding doors, finding landmarks, recognizing people, classifying objects and estimating 3D
position. We also devised new methods for learning topological maps for indoor navigation.

4.2 Theoretical results for reinforcement learning

One promising approach to control learning, currently being explored by many research groups,
is reinforcement learning. The key idea of reinforcement learning methods such as Q-learning,
is that they acquire a successful control policy by experimenting in their environment and ob-
serving the consequences. More specifically, training data consists of a delayed reward signal
that indicates when some sequence of actions has lead to a desirable state. Reinforcement learn-

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

4-2 MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

ing is relevant to learning for mobile robots and for learning to optimize manufacturing proces-
ses. .

Previous research in Q-learning has shown theoretically that it can converge to optimal control
policies for Markov processes under certain circumstances. A major restriction in these theoreti-
cal results is that they require that the learner acquire an evaluation function represented by a
complete table, with one entry for each possible state-action pair. In other words, these results
do not apply to Q-learning approaches that use techniques other than rote learning. In contrast
experimental results have shown that, when based on function approximators such as Back-
propagation and EBNN, Q-learning sometimes converges and sometime does not. A better
theoretical characterization of Q-learning is needed in order to understand when and how it
might be used in practical problems.

We developed new theoretical results relevant to understanding the convergence of reinforce-
ment learning using function approximators. In particular we showed that for parallel-update.
offline dynamic programming (a problem closely related to Q-learning), the algorithm converges
for both rote learning and for certain types of generalizing function approximators. This is the
first published proof about convergence of this class of algorithms, using generalizing function
approximators rather than rote learning. It shows, for example, that nearest-neighbor approaches
will converge, whereas neural network approaches will not converge in general. This work is

- described in.more detail in a paper submitted to the International Conference on Machine Leam-

ing. :

4.3 Probabilistic navigation

A landmark-based navigation scheme for our indoor mobile robot that uses reactive monitors and
exception handlers to achieve reliable behavior. Although its navigation characteristics were
good, further experience showed that the robot would occasionally get lost, and we determined
that incorporating learned feature detectors (a major goal of this research) would not be
straightforward.

We developed an alternative navigation scheme that uses probabilistic, partially-observable
Markov models to track the robot’s position and to indicate which actions to take. The nodes of
the Markov model represent discrete positions and orientations of the robot, and the navigation
scheme uses sensor readings (currently sonar and dead-reckoning) and Bayes’ rule to update the
probabilities that the robot is at each location. To actually navigate, a path planner associates
actions with each Markov node, and, whenever the probabilities are updated, the action with the
_highest total *‘probability’’ mass is taken.

This approach has several advantages over previous navigation schemes, including our own
landmark-based navigation. First, it is easy to add new (learned) feature detectors, merely by
providing a table of conditional observation probabilities for each Markov node. Second, our
formulation explicitly encodes uncertainty in the lengths of corridors, so that accurate metric
maps are not needed. Third, the representation of positional uncertainty is better suited to indoor
navigation than, say, Kalman filters, since the Markov models can represent more general prob-
ability distributions (e.g., "the robot is in front of either door101 or door37"). Finally, the robot
does not get lost nearly so often, since position tracking is much more robust.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS 4-3

4.4 Learning robot action effects

One key type of knowledge for robotic applications is that of the effects of robot actions. Robot
planning approaches that search through the space of possible robot actions rely crucially on
such knowledge of action preconditions and effects. However, most experimental work in
robotics encounters difficulties in modelling the true preconditions and effects of actions. We
have begun exploring the feasibility of learning such action models from experience.

In one set of experiments, neural network backpropagation was used to learn the effects of
several potential Xavier mobile robot field navigation actions. For each of these actions, a neural
network learned to predict the values of future sensor readings (after performing the action)
based on the current sensor readings (before performing the action). Sensor readings include
sonar range readings, laser range values, and the position of a target object within the visual field
of a color camera. Each action corresponds to applying the potential field navigation procedure
for approximately two seconds, attempting to reach a particular target position while treating
observed obstacles as repulsive forces. These actions are quite difficult to model due to the
unpredictable effects of specific types of obstacles on the actual robot trajectory and to sensor
noise. Approximately 3000 training examples of these action effects were collected by allowing
the robot to roam through a cluttered laboratory. The learned action models were able to charac-
terize typical effects of the actions, including the effects of many types of obstacles [Mitchell
and Thrun 94]. The approximate learned action models are probably too inaccurate to be used in
straightforward planning algorithms, though future work will explore ways in which such ap-
proximate action models can be useful. Despite this, we have found these approximate action
models are quite useful for guiding subsequent learning of robot control strategies.

4.5 Learning road features for autonomous driving

In collaboration with Carnegie Mellon's Autonomous Land Vehicle Naviab effort, we explored
the feasibility of supervised learning of useful road feature recognizers (e.g., road edge, center
line). The goal of this work is to learn efficient, reliable feature recognizers that are of use for

autonomous driving.

The key result during this period, reported in [Thorpe et al. 94], was the use of neural network
backpropagation to learn useful feature detectors for road edges and centerlines. These learned
features:
e are more reliable than the hand-crafted feature recognizers used in the current YARF
system, and

¢ were learned automatically from training data generated by the current YARF sys-
tem.

Somewhat surprisingly, the neural networks learned from training data provided by YARF are
more reliable than the YARF recognizers. We believe this may be a side effect of the inductive
bias of neural networks (which tends to interpolate smoothly among training examples), coupled
with signal and noise characteristics of data for this task (where many image pixels can provide
clues about the feature, but no single pixel can be trusted). While we still do not understand the
range of tasks for which this phenomenon may hold, it appears that at least in this case, the
learned features will be useful.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

44 MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

4.6 EBNN learning

The EBNN learning algorithm has been developed as a learning technique that scales up to more
complex learning tasks than can purely inductive methods such as neural network Backpropaga-
tion. EBNN is a more powerful learning method because it uses knowledge previously learned
by the robot to augment the training data available for the new learning task. The TCA architec-
ture has been used as the basis for a mobile navigating robot, incorporating a robust planning
technique based on Partially Observable Markov Models. An initial design has been developed
for incorporating EBNN into TCA as the next step in this research.

We applied the EBNN learning algorithm more thoroughly to a mobile robot perceptual task, by
conducting a thorough experimental study based on the Xavier mobile robot. This study,
described in [O’Sullivan et al. 95], explores several different ways in which prior knowledge
could be used to explain new observations, thus guiding learning. The results reinforce our in-
itial assessment that EBNN provides a more effective learning mechanism than Backpropagation
in cases where the robot must learn a new task in a familiar environment. It also provided ex-
perimental evidence that EBNN is robust to errors in the previously learned action models — its
performance degrades gracefully with increasing error in the action models, in the limit ap-
proaching the performance of purely inductive Backpropagation. We have extended the initial
studies reported in this paper by comparing the performance of EBNN to an alternative algo-
rithm for utilizing prior knowledge, called KBANN (developed at the University of Wisconsin).
EBNN and KBANN appear to offer complementary advantages in terms of their robustness to
errors in prior knowledge and in the way they utilize this knowledge to influence learned net-
work weights. We have therefore begun to explore ways of combining these two approaches
into a third algorithm that would subsume both. We conducted initial experiments, but the work
has not, during this reporting period, led to publishable results.

EBNN was also applied to visual object recognition based on a single image. Object appearance
varies because of translation and rotation of the object and because of differences in lighting
conditions. When presented training data for several types of objects, the system learned an
invariance function — a mapping (Imagel x Image2 -> {T.F}) whose value is T only if Imagel
and Image?2 are images of the same object. This invariance mapping approximately charac-
terizes the notion of "equivalent object," relative to the typical changes in lighting, translation.
and rotation within our domain. During the past six months we have completed the set of
preliminary experiments begun earlier, completed the final version of a technical paper on this
work [Thrun and Mitchell 95], and presented this paper at JCAI95.

We completed our experimental analysis of EBNN and a large-scale comparison of different
methods (all developed at Carnegie Mellon) that transfer knowledge across multiple learning
tasks.

We determined that transferring knowledge is more important than a careful selection of the
particular learning algorithm. In our study we found that all algorithms that transfer knowledge
generalize significantly more accurately from less data than the best algorithms that do not trans-
fer knowledge [Thrun 96a, Thrun 96b].

We completed our experiments with the EBNN algorithm, demonstrating that by using
previously learned knowledge it is able to significantly outperform purely inductive learning al-
gorithms such as neural network backpropagation. Based on this experience we began exploring

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS 4-5

a variety of new algorithms for using prior knowledge, as detailed below. In addition we
developed new approaches to learning maps for navigation and began design of a "lifelong learn-
ing" architecture intended to accumulate knowledge over a long period of robot operation.

4.7 Improving techniques

4.7.1 Navigation

We extended our POMDP model of robot navigation to better model foyers, rooms, and cor-
ridors of different widths. This enables the robot to travel to more places, more reliably, and
enables us to run the robot in more varied environments.

To test the reliability of our probabilistic navigation algorithms, we created a Web-based inter-
face (http://www.cs.cmu.edu/~Xavier). The interface enables people worldwide to see what
the robot sees and to command it to go to various offices in our building. A task scheduler
handles the myriad requests, deciding where to send the robot. Since last December, the robot
has operated nearly every other day and has traveled over 70 kilometers, performing over 2000
jobs, and successfully reaching the commanded room nearly 95% of the time.

We developed a real-time learning algorithm that refines the probability estimates of our
POMDP models. This algorithm can learn such things as the probability of observing features,
given that they occur in the environment, the dead-reckoning characteristics of the robot, and the
(perceived) lengths of corridors. The algorithm runs in background mode., as the robot is per-
forming its tasks, and is unsupervised (needs no "ground truth”). We have tested the algorithm
offline, worked to integrate it into our current navigation system.

4.7.2 Learning visual features

We conducted several experiments in learning visual features. In one, we trained a neural net-
work to recognize when it was in front of closed and open doors. We now use that learned
network on a daily basis in our WWW-based navigation system to allow the robot to place itself
in front of doorways, based on its own visual information. We also worked on having the robot
use this network to learn the angular direction to the door, an ability that would significantly
reduce the time needed to perform the servoing. We also implemented a memory-based learning
technique to locate open doorways and estimate the robot’s distance and angle to the doorway.

Another experiment in visual learning integrated eigenvector-based object classification
(developed by Shree Nayar at Columbia) and color-histogram feature detection (developed by
Mike Swain at U. Chicago) to classify a variety of objects and estimate their 3D positions using
only a single color image. The combined algorithm runs more reliably than the color histogram
method alone and is significantly faster than the original, pixel-based, object classification algo-
rithm. This combined algorithm will be applied to our ongoing work in mobile manipulation.

SOFTW ARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

+6 MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

4.7.3 Autonomously-discovered landmarks

We developed and tested an algorithm that enables a robot to discover its own landmarks. This
procedure differs from previously published algorithms in that no human is required to define
appropriate landmarks. While "discovering” landmarks, the robot trains neural networks for their
detection. Our initial tests suggest that the new approach reduces the error in localization by a
factor of 3 to 20 when compared with our best previous visual method.

We worked to integrate learning visual landmarks with our POMDP models to automatically
learn new landmarks in areas of the building where the robot has trouble recognizing where it is.
The idea is to notice when the entropy of the probability distribution gets high, and then learn
features in that specific area that minimize distance error and/or entropy. These feature detectors
can then be selectively activated whenever the robot believes that it may be approaching that
area.

4.7.4 Obstacle avoidance

We developed a realtime, local-obstacle-avoidance method that considers the robot dynamics,
enabling the robot to travel significantly faster than previously (60-90 cm/s, depending on the
speed of the proximity sensors) and more smoothly. This algorithm is now the primary obstacle
avoidance technique used by our robots. It is also being distributed commercially by a leading
mobile robot manufacturer,-Real World Interfaces Inc. (Jaffrey, New Hampshire).

4.7.5 Rebot control software

RAPs (developed by Jim Firby at U. Chicago) and TCA (Task Control Architecture, developed
by Simmons at Carnegie Mellon) are two of the more popular task-level-robot control architec-
tures. One advantage of RAPs is a nice syntax for expressing control strategies. An advantage
of TCA is its distributed, concurrent nature. We worked to combine RAPs and TCA. The idea
was to transform RAPs expressions into code that utilizes the TCA library of control constructs.
We have succeeded in distributing the RAPs symbolic data base. using TCA’s network com-
munications mechanisms, and have implemented a subset of RAPs expressions using TCA con-
trol constructs. Our TCA robot control architecture has been selected for use in NASA’s New
Millenium project.

We improved our methods for autonomous robot exploration and learning two-dimensional oc-
cupancy maps by incorporating laser rangefinder data. Our current software is able to map reli-
ably areas up to size 60 by 20 meters, that were impossible with our previous software. Our new
algorithm extracts topological maps from our learned occupancy maps. By using topological
maps. we were able to reduce the complexity of motion planning by three to six orders of mag-
nitude, incurring an actual performance loss (detours) of less than 4%. As a result, for reasonably
sized indoor environments, we can now efficiently pre-compute all motion plans, so that no fur-
ther planning is necessary during everyday robot operation. Our map learning and planning
software is now being distributed along with robots manufactured by Real World Interfaces, Inc.,
as their sole navigation software.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

47

MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

4.7.6 Testbed

We built a mobile, rotating-brush-wielding robot that employs a stripped-down versior} of our
best map learning, collision avoidance, and position control methods. The robot came in first at
the preliminary trials and tied for first place at finals of the 1996 AAAI mobile robot competition

(both in the category "clean-up a tennis court.”)

Finally, we developed a new "lifelong” learning method (TC) that learns to recognize
landmarks/people/objects and locations. Unlike our previous methods, this new technique can
selectively build on related, previously learned knowledge to guide generalization. Empirically,
we demonstrated a significant reduction in sample complexity when knowledge was transferred
from previous, similar learning tasks.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

4-8 MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

4.8 Bibliography

[Fox et al. 96a)
Fox, D., W. Burgard, and S. Thrun.
The Dynamic Window Approach to Collision Avoidance.
IEEE Robotics and Automation, 1996.
To appear. :

[Fox et al. 96b]
Fox. D., W. Burgard, and S. Thrun.
Controlling Synchro-drive Robots with the Dynamic Window Approach to Collision
Avoidance.
In Proceedings of the IROS, 1996. IROS, 1996.

[Gordon 95]
Gordon, G.
Stable Function Approximation in Value Iteration.
In Proceedings of the 12th International Conference on Machine Learning. July, 1995.

[Koenig and Simmons 96a]
Koenig, S., and R.G. Simmons.
The Effect of Representation and Knowledge on Goal-Directed Exploration with
Reinforcement-Learning Algorithms.
Machine Learning Journal(22):227-250, 1996.

[Koenig and Simmons 96b]
Koenig, S., and R.G. Simmons. -
Unsupervised Learning of Probabilistic Models for Robot Navigation.
In Proceedings of ICRA 96. ICRA. 1996.

[Koenig and Simmons 96¢]
Koenig, S., and R.G. Simmons.
Passive Distance Learning for Robot Navigation.
In Proceedings of the Thirteenth International Conference on Machine Learning, pages
-"266-274". ICML, 1996.

[Koenig et al. 96]
Koenig, S., R. Goodwin, and R.G. Simmons.
Robot Navigation with Markov Models: A Framework for Path Planning and Leaming with
Limited Computational Resources.
In Reasoning with Uncertainty in Robotics. Springer, 1996.

[Mitchell and Thrun 94]
Mitchell, T.M. and S. Thrun.
Learning analytically and inductively.
In Steier, D. and T. Mitchell (editors), Mind Matters. Lawrence Erlbaum Associates, 1994.

[Mitchell et al. 94]
Mitchell, T.M., J. O’Sullivan, and S. Thrun.
Explanation-based learning for mobile robot perception.
In Proceedings of the Workshop on Learning Robots.] uly, 1994.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS 49

[O’Sullivan et al. 95]
O’Sullivan, J., T.M. Mitchell, and S. Thrun.
Explanation based learning for mobile robot perception. o
In K. Ikeuchi and M.M. Veloso (editor), Symbolic Visual Learning. Oxford University Press,
1995. ‘

[Simmons 93]
Simmons, R.
Expectation-based behavior.
In Proceedings of the International Symposium of Robotics Research. ISRR, 1993.

[Simmons 94]
Sitmmons, R.
Becoming increasingly reliable.)
In Proceedings of the Second International Conference on Artificial Intelligence Planning

Svstems. AIPS, June, 1994.

[Simmons 95]
Simmons, R.
Towards Reliable Autonomous Agents.
In Proceedings of the AAAI Spring Svmposium on Software Architectures. AAAI, March,
1995.

[Simmons 96a]
Simmons, R.
Where in the World is Xavier, the Robot?
In SPIE International Technical Working Group on Robotics and Machine Perception. 1996.

[Simmons 96b]
Simmons, R.
The Curvature Velocity Method for Local Obstacle Avoidance.
In Proceedings of ICRA 96. 1EEE, 1996.

[Simmons and Koenig 95]
Simmons, R.. and S. Koenig.
Probabilistic Navigation in Partially Observable Environments.
In Proceedings of the International Joint Conference on Al. August, 1995.

[Thorpe et al. 94] ‘
Thorpe, C., C. Athanassiou, J. Kay. T. Mitchell. and D. Pomerleau.
Machine learning and human interface for the CMU Navlab.
In Proceedings of the 6th International Symposium on Robotics Research. 1994.

[Thrun 96a]
Thrun, S.
Explanation-Based Neural Network Learning: A Lifelong Learning Approach.
Kluwer Academic Publishers, 1996.

[Thrun 96b]
Thrun, S.
An Approach to Learning Mobile Robot Navigation.
Robotics and Autonomous Systems(15):301-319, 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

4-10 ' MACHINE LEARNING IN LARGE SCALE SOFTWARE ENVIRONMENTS

[Thrun 96c]
Thrun, S.
Is Learning the n-th Thing any Easier Than Learning The First?
In D. Touretzky and M. Mozer (editor), Advances in Neural Information Processing Systems
(NIPS). MIT Press, 1996.

[Thrun and Buecken 96]
Thrun, S., and A. Buecken.
Integrating Grid-Based and Topological Maps for Mobile Robot Navigation.
In Proceedings of the AAAI 1996. AAAI, 1996.

[Thrun and Mitchell 95]
Thrun, S., and T.M. Mitchell.
Learning One More Thing.
In Proceedmgv of the Inrernanonal Jomr Conference on Al. August, 1995.
Also appeared as Technical Report CMU-CS-94-184. September 1994.

[Thrun and O’ Sullivan 96a]
Thrun, S., and J. O’Sullivan.
Discovering Structure in Multiple Learning Tasks: The TC Algorithm.
In Proceedmgs of the 1 3th International Confe;ence on Maclzme Learning ICML-96. ICML,
1996.

[Thrun and O’ Sullivan 96b]
Thrun, S., and J. O Sullivan.
Learning More From Less Data: Experiment in Lifelong Learning.
In Semmat Digest. IEE, 1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND-ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT 5

5. Specification, Verification, and Program Development
Our research goals in this area include developing:

 Methodologies and tools that allow digital system designers to specify desired sys-
tem behavior formally and to test their designs for adherence to the specification,

e A combined language, programming environment, and runtime support system that
provides the power of parallel supercomputers to nonspecialists.

5.1 Parallel computing

Our research goal in this area is to develop techniques for expressing programs that can map
efficiently onto a variety of different parallel machines. We believe that by developing an ap-
propriate set of linguistic abstractions, these programs can be expressed in a manner that is inde-
pendent of the machine architecture or detailed configuration. Our research proceeds on several
fronts, including language design, compilation techniques, programming environments, parallel
algorithms, and applications.

In recent years the parallel processing community has made major steps in simplifying the use of
a variety of high-performance parallel and vector computers by supplying languages that port
among these machines. Such languages include High Performance Fortran, C*, NESL, and UC.

- These languages are approaching the point where it will be possible to write.code once and then

run it on a variety of different parallel processors with good runtime efficiency. The languages
by themselves, however, do not go far enough to make the machines accessible to nonexperts.
To significantly increase the utility of high-performance parallel processors, the community
needs to: (1) supply a simple and uniform interface for accessing parallel machines and (2)
reduce the time required by users to prototype new parallel algorithms. To address these issues,
we are working on an environment and associated language that: '

o Allows users to access transparently remote parallel processors as servers,
e Supplies a common debugging environment across diverse machines,

o Allows users to interactively run interactively on parallel machines from their local
machine and get immediate results,

e Makes it easy to extend and modify existing libraries,
e Supplies common tools for analyzing running times and optimizing code.

By reducing the overhead associated with learning new environments for different machines,
these features go beyond the convenience provided by a portable parallel language. They would
make parallel processors significantly more attractive to users who have no particular interest in
parallel computing but who would greatly benefit from such computational capabilities.

The Scandal project is developing techniques for expressing programs that can map efficiently
onto a variety of parallel machine architectures without changes to the source code. We have
selected a data-parallel model, based on nested parallelism, in which a program is expressed as a
single sequence of operations, each involving multiple levels of parallelism. We are developing
a high level programming language NESL, embodying the nested parallel model, along with com-
pilation and run time support on several machine types. We are evaluating the model and lan-
guage by implementing a number of basic algorithms and applications, and comparing the per-
formance to implementations tailored to the specific machines.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-2 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

5.1.1 First full release of NESL

We recently made available via anonymous ftp our first full release (Version 3.0) of our parallel
language NESL. This release includes the implementation for workstations, the Connection
Machines CM-2 and CM-5, and the Cray C90 (a version for the MasPar MP2 is also available
from the University of North Carolina). The current implementation of NESL compiles into an
intermediate language called VCODE which is linked with a machine-specific library of op-
timized parallel operations (CVL).

This is a complete and quite robust implementation of the NESL language, including:
® Source code:

1. The NESL compiler and environment.
2. The VCODE interpreter.
3. Serial CVL.
4. Cray CVL.
5.CM-5 CVL.
6. CM-2 CVL.
7. An Xwindow graphics interface.

We have paid careful attention to code portability. The NESL compiler and environ-

ment have been tested under four different Common Lisps (Allegro, Lucid, CMU

and Kyoto). The code has also been extensively tested across all the parallel
machines we support. NESL has been used by over 100 users at several sites.

® Documentation:
I. The NESL language definition (CMU-CS-93-129).

2. The NESL user’s manual (includes information on the profiler, tracer,
remote execution, background processing and various environment
variables).

3. The VCODE reference manual (CMU-CS-91-11 8).
4. The CVL reference manual (CMU-CS-93-1 14).

e Working examples of NESL code:

adaptive-integration
Adaptive integration of single-variable functions.

awerbuch-shiloach Algorithm for finding the connected components of a graph.

convex-hull The QuickHull algorithm for finding convex hulls. Includes a
graphics demo.

hash-table An implementation of a parallel hash table.

line-fit Least-squares fit of a line to a set of points.

micro-shell A micro shell that keeps track of current directory and executes
commands.

nas-cg The NAS conjugate gradient benchmark.

order Recursively finds the ki largest element of a vector.

primes Work-efficient parallel implementation of the prime sieve algo-
rithm.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

separator Geometric separator code. Includes a graphics demo of it run-
ning on an airfoil.

sort Various sorts: quicksort, Batcher’s bitonic sort and Batcher’s
odd-even mergesort.

spectral Spectral separator code. Includes a graphics demo of it running

on the same airfoil.
string-search Fast string search algorithm.

These examples range from small to medium sized applications. They both serve as
illustrations of how to write code in NESL, and also as useful utilities on their own.

The NESL front end runs on a user’s workstation while allowing the remote execution of
programs on parallel or vector supercomputers. The interactive environment includes a library
of graphics routines, profiling and tracing facilities, and on-line documentation.

~ SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT 5-3

5.1.2 The current state of NESL

| Given that NESL is a research language, an obvious question ‘‘is how practical is it to use?”” In
its current state we view NESL as a good language for the following uses:

e Protorvping: In NESL it is relatively easy to develop quick implementations of paral-
lel algorithms and applications. As long as the algorithm itself is efficient, these
implementations will usually run within an order of magnitude of machine specific
code, and can often run within a factor of 2 (see the discussion below). NESL has
been used, for example, to experiment with various parallel algorithms for the N-
body problem, and various algorithms for finding separators of graphs for use in
finite-element code. .

e Distributing lightweight portable code: Although the full NESL environment is quite
heavy, since it runs within Common Lisp, once an application is complete it is pos-
sible to dump the intermediate code (VCODE) to a file—NESL supplies utilities to do
this. This code can then be executed directly using the VCODE interpreter: The inter-
preter binary only requires about 200 Kbytes space on workstations and a little more
on the parallel machines. This makes it very easy to distribute applications: All the
user needs is the VCODE interpreter and the dumped VCODE file. We have success-
fully used this technique for distributing geometric separator code.

e Teaching parallel algorithms: NESL’s interactive environment, which runs on a local
| workstation while allowing remote execution, makes it very convenient for students
to use in a class. The online help and graphical interface were also designed with
teaching in mind. NESL has been used for teaching at several sites including Car-
negie Mellon, Dartmouth, University of North Carolina, University of Toronto, and
the University of Exeter (UK).

e Compiler experimentation: This was our major motivation in designing NESL. Be-
cause its core is small, simple, and designed from the start with parallelism in mind,
it is well suited for this purpose. It allows one to work on compiler issues without
having to deal with language artifacts that often arise in parallel extensions to serial
languages.

Our implementation of NESL has concentrated as much on ease of use and true portability as on
performance. Several implementation decisions reflect this concentration. For example, the use

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

54 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

of an interpreter has greatly simplified the portability and the ability to use the language inter-
actively at the cost of performance (although the interpretation does not affect efficiency nearly
as much as one might expect since the interpretive overhead is amortized over operations on
large data sets).

For many applications it is possible to get within a factor of two of optimized machine specific
code using NESL. However, there are a handful of things on which NESL does not perform par-
ticularly well, the most important being:

* NESL is not optimized for applications on dense matrices. In particular NESL does
not support multidimensional arrays directly. Multidimensional arrays can be im-
plemented with nested sequences, but this imposes some overheads—in particular,
the arrays will not get laid out across processors in a communication-efficient way.
We felt that HPF is making very gond progress on computations on dense arrays and
did not want to duplicate their work.

* Because the intermediate language VCODE is interpreted, the average parallelism has
to be quite high to get good efficiency. For example, on a 32 processor CM-5 it is
necessary to have over 1000-fold parallelism to get reasonable performance.

* The current CM-5 implementation is not optimized. In particular it does not use the
vector units. o

* Sequences in NESL are laid out across processors using a block distribution. To take
advantage of locality the user has to understand this design. Furthermore, nested
sequences are flattened so that each subsequence is likely to be mostly local. In
general this a good heuristic for taking advantage of locality, but there are some
cases where naive use of such a layout can cause memory contention at a single
processor (e.g., several processor trying to access the same subsequence).

5.1.3 Parallel list ranking

List ranking and list scanning are two primitive operations used in many parallel algorithms that
use list, tree, and graph data structures. But vectorizing and parallelizing list ranking is a chal-
lenge because it is communication-intensive and dynamic. In addition, the serial algorithm is
simple and has small constants. In order to compete, a parallel algorithm must also be simple
and have small constants. A parallel algorithm due to Wyllie is such an algorithm, but it is not
work efficient—its performance degrades for longer and longer linked lists. In contrast, work
efficient PRAM algorithms developed to date have very large constants.

We have developed a new, fully vectorized and parallelized algorithm that both is work efficient
and has small constants. It does not achieve O(logn) running time, but we contend that work
efficiency and small constants is more important, given that vector and multiprocessor machines
are used for problems that are much larger than the number of processors and, therefore, the
O(logn) time is never achieved in practice. In particular, to the best of our knowledge, our
implementation of list ranking and list scanning on the Cray C90 is the fastest implementation to
date. In addition it is the first implementation of which we are aware that outperforms fast
workstations. The success of our algorithm is due to its relatively large grain size and simplicity
of the inner loops, and the success of the implementation is due to pipelining reads and writes
through vectorization to hide latency, minimizing load balancing by deriving equations for
predicting and optimizing performance, and avoiding conditional tests except when load balanc-

ing.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

We have implemented and published results on a technique to extract parallel reduction and
prefix operations from serial loops. Our technique can extract such operations where existing
techniques cannot. Furthermore, our technique is resilient to syntactic variations in the source
code, whereas many existing techniques are sensitive to syntactic quality.

The compiler accepts sequential Fortran and for each recurrence it detects, tries to extract an
equivalent parallel prefix operation. If successful, the compiler generates an SPMD program to
execute the operation on the iWarp parallel computer. '

We plan on extending the technique to work with a wider variety of recurrences. Possibilities

5.1.4 Automatic parallelization of complex scan algorithms
include combining send, multiprefix, and pointer jumping operations.
|

5.1.5 Theoretical issues in parallel computing
| In 1988 Leighton, Maggs, and Rao showed that for any set of packets whose paths have conges-
| tion ¢ and dilation d, in any network. there exists a schedule for delivering the packets from their
| origins to their destinations in O(c+d) steps while queuing at most a constant number of packets
at any node at any time step. The proof, however, was non-constructive, and whether there
existed a polynomial time algorithm for constructing the schedule remained an open problem for
| six years. We have resolved the question by demonstrating a nearly linear-time algorithm for
) constructing the schedule. ’ :

We have been studying simple online algorithms for processing connection requests in dis-
tributed networks, *‘call admission’* algorithms. Each request comes with a source, a destina-
tion, and a bandwidth requirement. The duration of the request may or may not be known when
the request is made. The call admission algorithm either schedules the request to begin im-
mediately, schedules it to begin after some delay, or rejects it. We have analyzed the perfor-
mance of the algorithms on simple networks such as linear arrays, trees. and networks with small
separators. Three measures are used to quantify performance: makespan, maximum response
time, and data-admission ratio. Our results include a proof that greedy algorithms are ©(log
N)-competitive with respect to makespan on N-node trees. and a proof that no algorithm is better
than Q(log N)-competitive with respect to data-admission ratio on a linear array, if each request
can be delayed for at most some constant times its (known) duration.

We have been studying the behavior of a simple, local, load-balancing algorithm that
redistributes unit-sized ‘‘jobs’’ among the nodes in a distributed network. At each step, each
node sends a job to any neighbor holding fewer jobs. Previously. we showed that the algorithm
balances the number of jobs at the nodes to within a difference of O(d logn/ut) in O(A log(nA)/p)
steps, where d is the maximum degree of any node in the graph, 7 is the number of nodes in the
graph, A is the initial imbalance, and p is the expansion of the graph. We have improved the
bound on the running time to O(A /u + d log n/u?), which is optimal. In addition we show that
reducing the imbalance below O(d logn/) may require n!€ time, for any £ > 0.

We have also shown that even if every node in an N-node butterfly network fails with some
constant probability p>0, with high probability it is still possible to identify some subset of at
least ©(N) nodes between which any permutation can be routed in ©(log N) steps. Although the
analysis is quite involved, the routing algorithm itself is nearly as simple as the algorithm for

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-6 ' SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

routing in a fault-free butterfly network. Previous algorithms for tolerating a large number of
random faults in a butterfly network were extremely complicated and required more than O(log
N) time.

5.1.6 MPI implementation of CVL and NESL

We ported CVL to the new MPI (Message Passing Interface) standard, which is supported by
both industry and academia. This guarantees the portability of CVL (and NESL) to future MPP
machines based on a message-passing architecture and also to any other machines that support
an efficient MPI implementation atop, for example, shared memory. We tested an initial version
of MPI CVL on workstations (the Intel Paragon, IBM SP-1, and TMC CM-5), and released it for
anonymous FTP by our users. Communication performance results on coarse-grained machines
are within a few percent of the underlying message passing layer. Results on the fine-grained
CM-5 are only 2/3 of those achieved by a machine-specific, CM-5 CVL, due mainly to the extra
buffering needed to amortize the overhead of MPI's coarse-grained messages. We are working
with the authors of the MPI reference implementation to correct some of these problems.

5.1.7 NESL implementation of the N-body problem

Using NESL we compared two algorithms for the three dimensional N-body problem, the Barnes-
Hut algorithm and Greengard’s Fast Multipole Method (FMM), to determine which of the two
performs better in practice. Although FMM has a better asymptotic running time, O() instead
of O(n logN) for uniform distributions, the algorithm is significantly more complicated and it is
not immediately clear above what values of N it performs better in practice. We studied the
dependence of accuracy on the variable parameters © (in the Bamnes-Hut algorithm) and p (in the
FMM), and then compared the floating-point operation-count for the two algorithms for similar
levels of accuracy. At a high level of accuracy (RMS-error < 10-9), the FMM did fewer opera-
tions than the Barnes-Hut for N > 104, assuming a random distribution of points. At a lower
level of accuracy RMS-error < 10-3) the FMM did not outperform Barnes-Hut until N > 108. We
found that there was more parallelism than required and had to serialize some of the code to
reduce the memory requirements. '

5.1.8 NESL implementation of preconditioners

Solution of partial differential equations by either the finite element or the finite difference
methods often requires the solution of large, sparse linear systems. When the coefficient matrices
associated with these linear systems are symmetric and positive definite, the systems are often
solved iteratively using the preconditioned conjugate gradient method. We have developed a new
class of preconditioners, which we call support tree preconditioners, that are based on the con-
nectivity of the graphs corresponding to the coefficient matrices of the linear systems. These new
preconditioners have the advantage of being well-structured for parallel implementation, both in
construction and in evaluation.

We evaluated the performance of support tree preconditioners by comparing them against two
common types of preconditioners: those arising from diagonal scaling, and from the incomplete
Cholesky decomposition. We solved linear systems corresponding to both regular and irregular
meshes on the Cray C-90 using all three preconditioners and monitored the number of iterations
required to converge and the total time taken by the iterative processes. We show empirically

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

that the convergence properties of support tree preconditioners are similar, and superior in many
cases, to those of incomplete Cholesky preconditioners, which in turn are superior to those of
diagonal scaling. Support tree preconditioners require less overall storage, less work per itera-
tion, and yield better parallel performance than incomplete Cholesky preconditioners. In terms of
total execution time, support tree preconditioners outperform both diagonal scaling and incom-
plete Cholesky preconditioners. Hence, support tree preconditioners provide a powerful, prac-
tical tool for the solution of large sparse systems of equations on vector and parallel machines.

5.1.9 Parallel computing and program development

Implementation of parallel algorithms in NESL
We have implemented NESL parallel versions of the following applications:

¢ Barnes Hut N-body solver.

e Greengard’s fast multipole N-body solver.

¢ A hybrid N-body solver: the Parallel Multipole Tree Algorithm (PMTA).

e A fluid flow simulator (for non-viscous, incompressible fluids).

e Parallel algorithm for triangulating a set of points (Delaunay triangulation).

e Parallel graph separator (mesh partitioner).

The ability to bring up these applications quickly gives some evidence of the ease of use of the
language. Visualizations of many of these algorithms are available at the Scandal web site,

http://www.cs.cmu.edu/~scandal.

Memory management for parallel programming languages

We have studied scheduling techniques that save memory in implementing fine-grained parallel
languages. The problem we are addressing is that these languages (including HPF, C*, Sisal,
and NESL) can often create too much parallelism which in turn requires excessive memory. We
developed a scheduling order for which we can prove that a parallel execution will never use
significantly more memory than a sequential execution. The technique should be applicable to a
wide class of languages.

Improved visualization tools for NESL

We have extended the NESL’s visualization tools so that much more of the work gets executed in
parallel on the machine that generates data. In particular all the coordinate transformations as
well as line clipping now execute in parallel. This approach significantly improves the perfor-
mance of realtime visualization, where the graphics can often become the bottleneck of an ap-

plication.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-8 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

5.1.10 Management of network resources

Near-optimal packet routing schedules

In 1988 Leighton, Maggs, and Rao showed that for any set of packets whose paths have conges-
tion ¢ and dilation d, in any network, there exists a schedule for delivering the packets from their
origins to their destinations in O(c+d), steps while queuing at most a constant number of packets
at any node at any time step. The proof, however, was nonconstructive, and whether there ex-
isted a polynomial time algorithm for constructing the schedule remained an open problem.
Leighton and Maggs resolved the question by demonstrating a nearly linear time algorithm for
constructing the schedule [Leighton and Maggs 95).

Analysis of call admission algorithms

We have been studying algorithms for processing connection requests in distributed networks.
These algorithms are called call admission algorithms. Each request comes with a source, a
destination, and a bandwidth requirement. The duration of the request may or may not be known
when the request is made. The call admission algorithm either schedules the request to begin
immediately, schedules it to begin after some delay, or rejects it. In [Feldmann et al. 95] we
analyze the performance of the algorithms on simple networks such as linear arrays, trees,
meshes, and networks with small separators. Three measures are used to quantify performance:
makespan, maximum response time, and data-admission ratio. Their results include a proof that
greedy algorithms are Theta(log N)-competitive with respect to makespan on N-node trees, and a
proof that no algorithm is better than Omega(log N)-competitive with respect to data-admission
ratio on a linear array, if each request can be delayed for at most some constant times its (known)
duration. .

Analysis of network load balancing algorithms

We have been studying the behavior of a simple, local. load-balancing algorithm that
redistributes unit-sized ‘‘jobs’’ among the nodes in a distributed network. At each step, each
node sends a job to any neighbor holding fewer Jjobs. Previous work showed that the algorithm
balances the number of jobs at the nodes to within a difference of O(d log n / mu) in O(Delta log
(n Delta) / mu) steps, where d is the maximum degree of any node in the graph, n is the number
of nodes in the graph, Delta is the initial imbalance. and mu is the expansion of the graph.
Maggs, Richa, and several collaborators [Ghosh et al. 95] have now derived a tight analysis of
the algorithm. They show that the actual time bound is O(Delta/mu). In addition, they show that
reducing the imbalance below O(d log n / mu) may require n”(1-epsilon) time, for any epsilon >
0.

Routing in butterfly networks with faulty components

Cole, Maggs. and Sitaraman have shown that even if every node in an N-node butterfly network
fails with some constant probability p > 0, with high probability it is still possible to identify
some subset of at least Theta(N) nodes between which any permutation can be routed in O(log
N) steps. Although the analysis is quite involved, the routing algorithm itself is nearly as simple
as the algorithm for routing in a fault-free butterfly network. Previous algorithms for tolerating a
large number of random faults in a butterfly network were extremely complicated and required
more than O(log N) time.

FINAL REPORT 19Y93-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

5.2 Formal hardware verification and symbolic manipulation

Our efforts in formal verification span multiple levels of abstraction, ranging from concurrent
systems communicating by complex protocols at the highest level to transistor-level circuit im-
plementations at the lowest. Currently we are focussing our efforts on three classes of systems:
reactive systems, sequential processors, and arithmetic circuits. We believe that these different
classes of systems call for different verification strategies in terms of how the desired behavior is
specified and how system correctness should be established.

A reactive system consists of a number of independent agents communicating and synchronizing
according to some protocol. Rather than describing the exact behavior of such a system, the
specification consists of a set of general properties that the agents and the protocol must fulfill.
For example a distributed shared memory system contains a number of bus controllers,
memories, and caches interacting according to a cache coherency protocol. The specification
states that the effects of read and write operations must satisfy some general consistency proper-
ties without fixing the exact system behavior. These systems have complex control but perform
only simple data operations. We have recently begun focussing on the real-time behavior of
such systems.

A sequential processor conceptually executes a single sequence of operations. The processor
has a user-visible state, and the effect of each operation is to modify this state. For example-a
microprocessor executes a single sequence of instructions, each modifying the state of the CPU
registers and the processor memory. Note that the underlying implementation may have com-
plex temporal behavior due to pipelining, multiple functional units, and superscalar operation.
The goal in verifying such a system is to show that, despite these complexities, the overall be-
havior corresponds to the single sequence view of the specification. Complexities in these sys-
tems stem from interactions between the control and data operations.

An arithmetic circuit implements some arithmetic function such as integer or floating point mul-
tiplication. Such systems have very simple control, e.g., combinational logic or a fixed execu-
tion sequence. On the other hand, their manipulation of data can be quite complex. In addition
the user should be able to give an abstract specification in terms of the data encodings (e.g.,
two's complement) and the arithmetic operation performed.

In the process of developing formal hardware verification programs, we have developed efficient
packages for symbolic Boolean manipulation based on BDDs. Over the past few years, BDDs
have been used for a wide range of tasks in digital system design and beyond. We continue
research on BDDs as well as on generalizations beyond Boolean functions. Our most recent
extension is to Binary Moment Diagrams (BMDs), see section 5.2.18. These data structure
provide an efficient method for representing word-level arithmetic functions.

5.2.1 Extending SMV to use dynamic variable ordering

The SMV model checking system uses BDDs to represent transition relations and sets of states.
This representation can often avoid the state explosion problem that occurs when complex cir-
cuits and protocols are analyzed. The size of the BDDs is very sensitive to the relative order of
the state variables. With earlier versions of SMV, the user had to construct the variable ordering
manually in order to control the size of the BDDs. This process was very time consuming and
required a deep understanding of the behavior of BDDs. Usually, the ordering that was
generated was not very good and thus increased the cost of the verification.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-10 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

We have improved SMV by implementing the automatic variable ordering algorithm of Rudell.
The basic idea is very simple. When the algorithm is activated, it selects one variable and tries
to order it so that the total number of BDD nodes is minimized. This process is repeated for all
variables. Like other hill-climbing algorithms for NP-hard problems, this algorithm only gives a
local optimum. However, when this algorithm is used properly, the result can be very good. As
an SMV program evolves during the design cycle and becomes more complicated, the BDD size
may grow dramatically. The dynamic variable ordering algorithm can reduce the BDD size by
very large factors each time it is used. Even without a satisfactory initial variable ordering, the
extended SMV system often obtains a variable ordering that is much better than the ordering
constructed by the user. This feature makes SMV much easier to use, since it is possible to write
SMV programs for large systems without worrying too much about the behavior of the BDDs
with respect to variable ordering.

5.2.2 Parameterized circuits

The most significant limiting factor in the verification of large circuits is the state explosion
problem. The number of states for a circuit or finite state machine grows exponentially in the
number of state variables. Thus, the number of states required to represent a circuit can quickly
become prohibitively large. Symbolic model checking allows us to avoid representing states
explicitly. Unfortunately, there are still circuits for which this is not enough. There are many
examples of very large circuits which cannot be verified in the straightforward way. Once such
type of circuit is called a parameterized circuit. These circuits consist of a number of very
similar or even identical components. While the number of components for any instance of a
parameterized circuit is finite, the humber can be arbitrarily large. Our hope is that we can ex-
ploit the duplication of components in these circuits to not only reduce the size of the verification
task, but also to be able to verify an entire class of circuits simultaneously by verifying the cir-
cuit independent of the number of duplicated components.

The first attempt to address this question resulted in indexed CTL. By establishing an ap-
propriate relationship between a circuit with n components and a circuit with n+/ components,
one can guarantee that all instances of the parameterized circuit satisfy the same formulas in the
indexed logic. The next step is to exhibit a bisimulation between an n component system and for
example a 2 component system. Then by applying model checking to the 2 component system,
we can also verify the n component system. However, this approach requires the bisimulation to
be found by hand since finite state methods cannot be used to check a system with an arbitrary
number of states. A method proposed by Kurshan and McMillan and independently by Wolper
and Lovinfosse avoids this problem. This method uses a process g as an invariant when verify-
ing a circuit composed of duplicate processes p- If we can show that a process p satisfies the
invariant g and that p || ¢ also satisfies g then we can use induction to show that any composition
pll ... Il p also satisfies g, independent of the number of duplicated components p. In addition, if
q satisfies some specification we want to verify, then p || ... || p also satisfies the this specifica-
tion. Furthermore, this ‘‘satisfies’’ relation need not be as restrictive as the bisimulation required
in the case of indexed CTL. A related approach uses graph grammars to generalize the ‘‘in-
herently’” one dimensional composition used above to two dimensions. By first proving the
equivalence of all networks derived from a grammar, one can reduce the task of verifying all
systems derived from the grammar to verifying a representative. We are studying the possibility
of extending the *‘satisfies’* pre-order relation described above to graph grammars.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION. AND PROGRAM DEVELOPMENT 5-11

We are also currently exploring one promising approach for automatically generating the induc-
tion invariant. The idea is similar to the fixpoint computation technique employed in CTL model
checking. We start with an initial guess invariant process ¢; which approximates the true in-
variant g, and we iteratively improve the guess invariant until no further improvement is possible
or necessary. In particular, we start with ¢ ,=p. Clearly, g, is a proper representation of the
process p. In general. g; is an invariant process which properly represents the parallel composi-
tion of up to and including i copies of processes p. The guess invariant g, ; can be obtained
from g; as follows: If the guess invariant g, properly simulates the parallel composition of g; and
p. then g;,; = ¢;. Otherwise, we can obtain a counter-example c; such that the parallel composi-
tion ¢; || ¢; can simulate the parallel composition of g; || p, and hence the parallel composition of
up to i+/ processes of p (because g; simulates up to i processes). Therefore, we can set g;, ; = g;
Il ¢;. This process is repeated until we have reached a fixpoint for the invariant. That is, until q,
4;+ - The first g; such that ¢; = g;, ; will be the invariant that we are looking for.

5.2.3 Formal verification of microprocessors

We have applied our methodology for verifying sequential processors to several actual circuit
designs. In our methodology, the user describes the desired abstract system behavior as a series
of assertions, each expressing the effect a given operation will have on some part of the system
state. For a microprocessor, each assertion describes the effect of a single instruction execution
on some part of the programmer-visible system state. The user then gives an implementation
mapping describing how the actual circuit implements the abstract state. This mapping includes
both spatial and temporal information, including cases where the state moves through various
pipeline registers. -

Our initial test for the methodology was Hector, a 16-bit nMOS microprocessor designed at North
Carolina State University. We successfully verified a representative sample of instruction types
and addressing modes. This is one of the first examples of formal verification being applied to
an existing microprocessor circuit design, as opposed to one created specifically for formal
verification.

More recently, we have begun working with the MIPS-X design from Stanford. This design is
representative of modern, pipelined RISC processors. Our main difficulties to date have been in
dealing with switch-level circuit modeling problems. This design appears to be well-suited for
our verification methodology. The uniformity of the pipeline structure makes for a relatively
simple state mapping despite the heavy pipelining of instructions. The clean interface with the
memory subsystem (including caches) means that we can separately verify the processor and the
memory.

5.2.4 Image representation and analysis with binary decision diagrams

In an effort to explore wider applications of Binary Decision Diagrams (BDDs) we have looked
at representing bit-mapped images as Boolean functions from a set of variables giving binary
representations of the X and ¥ coordinates to binary values indicating black or white. The BDD
structure would then naturally exploit the hierarchy and uniformity in the image due to a sharing
of common subgraphs.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-12 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

One promising application of this approach is for representing VLSI masks. Highly structured
designs, such as memory and array structures should have compact representations as BDDs.
We have formulated the various spacing and width checks of design rule checking in terms of
BDD operations. These operations exploit the sharing in the BDDs to give greater efficiency.

We have implemented tools for converting chip layouts (in Magic format) into BDDs and for
performing mask checking operations. Our initial results have been respectable, but not spec-
tacular, in terms of the sizes of the representations and the efficiency of the checking operations.

5.2.5 Inductive Boolean function manipulation

We have been working on a methodology for verification of parametric circuits based on sym-
bolic manipulation of inductive Boolean functions. This methodology can be used to perform
automatic proofs by induction both in the structural domain for parametric combinational cir-

cuits, and in the temporal domain for finite state sequential systems. It comprises:

* IBF schemata— which include a canonical representation for functions in a par-
ticular class of inductive functions and the symbolic manipulation algorithms,

® circuit representation mechanisms—in order to handle practical examples of
parametric circuits, and B

e appropriate manipulations to perform specific verification tasks.

We now have a practical implementation of both the core package for handling one class of
inductive Boolean functions called Linearly Inductive Functions (LIFs), and the circuit represen-
tation mechanisms. We have experimented with this package and applied it to the task of check-
ing correctness properties for some common combinational circuits such as an adder, a decoder
etc. We have also applied it to obtain results for MCNC sequential benchmarks—both for obtain-
ing canonical representations for circuit outputs, and for checking input/output equivalence of
two finite state machine descriptions. Some more work needs to be done on looking into variable
orderings, possibly extending it to use dynamic variable reordering.

Along the theoretical side, we have explored further the relationship between a canonical LIF
representation of a sequential function output, and a classic DFA representation. We can show
that an LIF representation of a regular language is isomorphic to a minimal DFA representation
of the reverse language, i.e. one accepting the reverse strings. In principle a reverse DFA
representation can have exponentially fewer (or more) states than a forward DFA representation.
In practice, structured datapath circuits like shift registers, stacks, fifos, register files exhibit an
exponential collapse. On the other hand, typical controller circuits exhibit an increase. We are
working on identifying additional characteristics for classes of circuits with small reverse DFA:s.

5.2.6 A model checker for a VHDL subset

The VHDL hardware description language is widely used in digital circuit design and is likely to
be used even more in the future. Ensuring the correctness of descriptions written in VHDL is
therefore very important. One of the most powerful techniques for formal verification of finite-
state systems is temporal logic model checking. We have identified a subset of VHDL that ac-
commodates the most commonly-used description styles and allows efficient verification using
model checking techniques. Using this subset, we plan to build a model checker that can handle
industrial designs of realistic complexity.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION. AND PROGRAM DEVELOPMENT

In order for the model-checking techniques to be accepted in industry, we believe that it is essen-
tial to provide an interface between the verification tools that we have developed and some
widely-used hardware description language. VHDL is the obvious choice for such a language: It
is used as the input language for many CAD systems, it provides a wide variety of descriptive
styles, and it is an IEEE standard. However, VHDL is a complex language, and some of its
features cannot be handled by model checking techniques. For verification of hardware designs
it is therefore necessary to define a subset of VHDL that has a well-defined formal semantics and

allows efficient translation and verification.

VHDL is a very rich language. Certain language constructs can be expressed in terms of more
basic ones, while maintaining the same semantics. Therefore, for the first prototype, we have
attempted to select the subset of language constructs which are most widely used, without
restricting significantly the set of behaviors that can be described.

The language subset provides entity declarations and architecture bodies as design units. The
entity declaration is restricted to specifying a header with the interface ports; generics are not
allowed. The subset does not accept configuration declarations. The binding of component
instances to design entities has to be done by configuration specifications. Package declarations
and package bodies are supported.

All VHDL sequential statements are supported, as are most of the concurrent statements (block,
process, concurrent procedure call, concurrent signal assignment and component instantiation
statements). By including component instantiation into the subset, descriptions that combine be-
havioral and structural description styles can be verified. Recursive subprograms and operator or
subprogram overloading are not supported.

Only one process is allowed to assign on each signal. As a consequence, resolution functions and
the signal types register and bus are not supported. In interface declarations, only modes in, out
and inout are allowed. The subset does not allow the specification of rime expressions, either in
the wait statement (timeout clause) or in the signal assignment statement (after clause).

Since the verification technique that we use is based on searching finite-state models, only dis-
crete and finite data types and data structures are allowed. Real. access, and file types are not
supported.

In order to speed our implementation of the first working prototype, we will attempt to imple-
ment in the first stage a more restricted language subset. The first prototype will handle
synchronous descriptions, for which all wait statements are on the clock edge, and which don’t
contain subprograms or loops with dynamic iteration count. In later stages of the project we will
augment the model checker to lift these restrictions and handle additional language features.

5.2.7 Symbolic linear-time temporal logic model checking

The past thirteen years has seen considerable research on efficient model checking algorithms for
branching-time temporal logics, in particular, Computation Tree Logic (CTL). Verification tools
based on these algorithms have discovered nontrivial design errors in sequential circuits and
protocols and are now beginning to be used in industry. On the other hand descriptions in Linear-
time Temporal Logics (LTL) are often simpler than branching-time temporal logics, because

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-14 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

LTL does not require path quantifiers. Moreover LTL can describe some properties that cannot
be described in CTL. Relatively little research, however, has addressed efficient model checking
algorithms for linear-temporal logic, and practical verification tools are virtually non-existent.

We have shown that LTL model checking can be reduced to CTL model checking with fairness
constraints. Using this reduction we have constructed a symbolic LTL mode! checker that ap-
pears to be quite efficient in practice. In particular we showed how McMillan’s SMV model
checking system can be extended to permit LTL specifications. We have developed a translator
T that takes an LTL formula f and constructs an SMV program T(f) to build the tableau for f.
The tableau construction that we use is similar to the one described in our previous work. To
check that f holds for some SMV program M, we combine the text of T = T(—f) with the text of
M to obtain a new SMV program P = P(T, M). We add CTL fairness constraints to P in order to
make sure that eventualities of the form a U b are actually fulfilled (i.e. to eliminate those paths
along which a U b and a hold continuously, but b never holds). By checking an appropriate CTL
formula on P we can find the set V, of all of those states s such that fholds along every path that
begins at s. The projection of Vf to the state variables of M gives the set of states where the
formula f holds.

Note that our approach makes it unnecessary to modify SMV (or even understand how SMV is
actually implemented). We have evaluated the approach on several standard SMV programs,
including Martin’s distributed mutual exclusion circuit and the synchronous arbiter described in
McMillan’s thesis. To ensure that the experiments were unbiased, we deliberately chose
specifications that could be expressed in both CTL and LTL. The results that we obtained were
quite surprising: For the examples we considered, the LTL model checker required at most twice
as much time and space as the CTL model checker. Although additional examples still need to be
tried. it appears that efficient LTL model checking is possible when the specifications are not
excessively complicated.

Many other problems, such as testing inclusion and equivalence between various types of
-automata, can also be reduced to CTL model checking. We plan to use the same basic ap-
proach to extend SMV for testing inclusion between various types of w-automata. Moreover, in
many of the applications of model checking to verification, it is important to be able to assert the
existence of a path that satisfies some property. For example, absence of deadlock might be
expressed by the CTL formula AG EF start (regardless of what state the program enters, there
exists a computation leading back to the start state). Neither this formula nor its negation can be
expressed in LTL, so LTL model checking techniques cannot be used to decide whether the
formula is true or not. Ideally, it should be possible to reason about linear-time and branching-
time properties in the same logic (say, CTL"). We believe this goal can potentially be realized.
Emerson and Lei have shown how to reduce CTL" model checking to LTL model checking. If
the transformation outlined in this paper can be extended to incorporate their reduction, then it
should be possible to develop a model checker that can handle both types of properties. The
same basic approach can be used to extend SMV for testing inclusion between various types of
w-automata.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT 513

5.2.8 Timing issues in circuit verification

The ability to verify bounded properties is extremely important in the verification of
synchronous circuits and systems in general. Unbounded properties give information about the
correctness of the system, while bounded properties provide information about its performance.
Knowing how long it will take for a circuit to respond can sometimes be as important as know-
ing that it will respond at all. In a complex circuit an abnormally slow component may com-
promise the behavior of the whole system. Previous research extended CTL to allow the expres-
sion of bounded properties. SMV was also extended to handle these properties.

Current research involves finding ways of allowing for more realistic models. SMV has a restric-
tive notion of time. All events happen in one time unit. This condition is not true of actual cir-
cuits, where events take differing amounts of time to occur. We propose another extension of
SMYV to overcome this restriction. In the extended model, a transition takes time 7 to occur,
where 7 lies within a specified time interval. This feature allows for the implementation of non-
unitary transitions. Non-determinism is also implemented by this feature, since n can lie
anywhere within the given range, bringing the model closer to reality and permitting a more
accurate verification of circuits.

This idea leads to a more general concept that distinguishes the passage of time and transitions. It
is possible to have zero time transitions and time passing without state changes. Circuits often
change state in negligible time and also often spend time in one. More elegant and powerful ..
models can be constructed using this more general concept of time.

Other research involving timing issues in verification relate more to realtime systems than to
circuits. Parallel composition of processes is a topic that deserves close attention. General al-
gorithms are used for composing processes. SMV allows for synchronous composition, where all
processes execute simultaneously, and interleaving composition, where any process, but only
one, can transition at any point. However, in many cases this condition is not always true. In
realtime systems, for example, it is very common to have one processor that executes all proces-
ses. alternating among them. But in this case the choice of which process to execute next is not
nondeterministic, it relies on priorities and scheduling policies. A general composition algorithm
does not necessarily obey the right policy. In this case the semantics of the composed model may
be incorrect. or the scheduling policy may have to be explicitly implemented. A high overhead is
then imposed on the model, and state explosion problems can easily arise.

5.2.9 Specification using timing diagrams

While temporal logic has been a compact and natural specification technique for many classes of
system behaviors, it may be difficult for engineers to write specifications for certain types of
systems directly using temporal logic. This happens frequently when the specification involves
the description of sequences of ordered events, a situation common in many asynchronous, dis-
tributed systems. On the other hand timing diagrams are natural and intuitive ways to describe
temporal behavior of digital circuits and are widely used in the industry. It would therefore be
desirable to incorporate timing diagrams as an alternative to temporal logic specification in for-
mally specifying the behavior of a circuit for verification purposes.

We are currently developing a methodology to translate timing diagrams systematically into tem-
poral logic formulas or automata, which can then be directly used to verify the system using our

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-16 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

model checker. We have developed a proper formalism of timing diagrams tailored for
specification purpose, that allows the expression of conditional constraints among transitions as
well as sequential orderings of events. We are currently building a prototype graphical timing
diagram editor that engineers can use to describe visually the temporal behavior of a system.
Subsequently, the timing information captured will be translated to some equivalent temporal
logic or automata specification for verification by the model checker.

When the system fails to meet the specification, our current implementation of the model
checker will simply print out a path in the state transition graph that corresponds to a counter-
example of system behavior that violates the specification. Because the textural representation
of such state transition is not always intuitive, engineers may need to spend considerable time
tracking down the source of error from the counter-example. From this point of view a timing
diagram can potentially' become an invaluable tool for revealing subtle design errors. We extract
state assignments of different signals from the textural representation of the state transition path,
and visually display them as waveforms. If a timing diagram were used to specify the system
behavior, we could further display the constraints that are satisfied by the counter-example and
indicate the constraints violated by such— which violations correspond directly to the error
detected). We plan to further explore this direction as we proceed in the implementation of the
timing diagram interface.

5.2.10 Language inclusion for w-automata:

®-Automata are finite state machines accepting infinite strings. Like a conventional automaton,
an w-automaton consists of a set of states, an input alphabet, a transition relation, and a start
state. However, the notion of a final state does not make sense for a machine accepting infinite
strings, so a different acceptance condition must be used. In fact the several types of m-automata
differ precisely in their acceptance conditions. This discussion concentrates on one specific type
of w-automata, Buchi automata. A Buchi automaton can be thought of as the ‘‘natural’’ exten-
sion of finite state automata to strings of infinite length. The acceptance condition for a Buchi
automaton consists of a subset F of the set of states S of the automata. A Buchi automaton
accepts a string if there is at least one state of F that is entered infinitely often during the com-
putation.

@-Automata are of interest in part because of their use in verification. There are two basic ap-
proaches to verification. One is the model checking approach exemplified by SMV. In this
approach a process or circuit is modelled as a finite state machine and specifications are given as
logical formulas that are tested to see if they are true of the finite state machine. The other
approach, taken by COSPAN, rests on the idea of language inclusion between two mw-automata.
Both the specification and the the implementation are modelled as finite state machines, and a
check is made to see if the language of the implementation machine is contained in the language
of the specification machine. We have extended SMV to allow language containment between
w-automata to be verified. A translator has been built to convert an instance of the language
inclusion problem, given as a description of a pair of Buchi automata, into an instance of model
checking, given as an SMV program. If SMV model checking results in a specification being
false, the counter-example feature of SMV will then give a string that is accepted by the im-
plementation machine and not by the specification machine. The counter-example mechanism of
SMYV will also give a state trace for each machine.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

In our experience it has proven difficult to describe circuits as ®m-automata, so we are currently
investigating the possibility of testing language inclusion between a Kripke structure and an
o-automaton. This would allow us to continue to describe circuit models as Kripke structures
while allowing us to provide an w-automaton as a specification. In many cases. it may prove
easier and more intuitive to reason about specifications using w-automata than CTL.

5.2.11 Formal verification of sequential processors

In our methodology for verifying sequential processors, the user describes the desired abstract
system behavior as a series of assertions, each expressing the effect a given operation will have
on some part of the system state. For the case of a microprocessor, each assertion describes the
effect of a single instruction execution on some part of the programmer-visible system state. The
user then gives an implementation mapping describing how the actual circuit implements the
abstract state. This mapping includes both spatial and temporal information, including cases
where the state moves through various pipeline registers.

We have begun working with the MIPS-X design from Stanford. This design is representative of
modern, pipelined RISC processors. This design appears to be well-suited for our verification
methodology. The uniformity of the pipeline structure makes for a relatively simple state map-
ping, despite the heavy pipelining of instructions. The clean interface with the memory subsys-
tem (including caches) means that-we can separately verify processor and memory.

Our initial focus has been on the MIPS-X register file, which includes the bypass logic used to
implement operand-forwarding in the pipeline. The high-level specification for an idealized
(non-pipelined) register file— besides declaring the inputs, outputs, and internal state of the
abstract model—contains assertions describing how this state would be updated for each cycle of
register operation. In this somewhat simplified example we assume the file has a single read and
a single write port (the MIPS-X file has two read ports). Each cycle involves first a write or
no-op operation, followed by a read. The different assertions describe what values would be
produced on the read port as well as how the register elements would be updated. Several cases
are need to cover the various possibilities of matching read and write addresses, different read

and write addresses, etc.

Under normal operation, the MIPS-X register file operates as a simple memory, with the pipelin-
ing fully hidden. That is, a read will always return the most-recently written value, even though
there is a two-cycle latency for the actual register write. To verify normal operation, we would
therefore use a high level specification similar to that of the example, but extended to two read
ports. The implementation mapping would describe how the buffering in the bypass logic
creates the illusion of an unpipelined behavior.

To implement speculative execution through branches, MIPS-X implements a ‘‘squash’” opera-
tion in the register file to cancel any writes from the previous two cycles. To verify this opera-
tion we must extend the high level specification to express this capability. We do this by declar-
ing three copies of the register file state: ‘‘new,”’ ‘‘middle,”” and “‘old.”” During normal opera-
tion, writes update the new state, while the previous new and middle states are copied to the
middle and old states. Reads always retrieve the new state. A squash operation has the effect of
rolling back the state so that the old state is copied to the new and middle states. This example
illustrates how we would handle cases where the pipeline structure of a system is partially

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-18 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

visible. Rather than fully exposing the structure, we attempt to create an abstraction that hides as
much structure as we can. In this example we use an abstraction based on rollback—a natural
model for speculative execution.

We have verified the normal read/write behavior of the register file. Our main difficulties to date
have been in dealing with switch-level circuit modeling problems. We expect to complete the
verification of the squash operation shortly and then proceed to a verification of the full data
path.

5.2.12 Inductive Boolean function manipulation

We have developed a methodology for formal verification of inductively-defined hardware,
based on symbolic manipulation of classes of inductive Boolean functions. One of these classes.
called the linearly inductive functions LIFs, is useful for capturing both the structural induction
in linear iterative arrays and the temporal induction in finite state sequential systems. Our pre-
vious work focussed on handling each of these domains individually—functional verification of
parametric combinational circuits (regular in structure), and behavioral verification of sequential
circuits (regular in time).

Our latest effort has been in trying to handle both structural and temporal domains simul-
taneously. We are currently exploring the following two approaches: - .

® Use of LIF multiple parameter framework— We use a generalization of our single
parameter induction framework to handle multiple parameters. Essentially, an induc-
tion trajectory in a multiple parameter space is represented by a parameter decision
tree. At present we follow certain restrictions on these trajectories in order to use
simple BDD-like reductions to obtain canonical tree representations. These restric-
tions may limit the kind of circuits that can be represented as LIFs with both circuit
size and time as independent parameters of description.

A particular technique we have found useful in this context is the introduction of a
dummy parameter to capture induction along an opposite direction to a main
parameter. This has allowed us to represent the sequential description of a shift
register (also stack, FIFO) with arbitrary depth as an LIF. We are working on

_ generalizing this trick to other circuits with bidirectional behavior.

e Use of symbolic simulation with LIFs —For circuits where we cannot capture both
space and time within the LIF framework we are looking into an alternative tech-
nique for verification. Starting with LIF descriptions of circuits parametric in size,
e.g. an i-bit adder, we use symbolic simulation for a fixed number of cycles. This
approach gives us a handle on the circuit behavior, for an arbitrary circuit size, after
say 1.2,....n cycles of simulation. In our i-bit adder example this can be used to
derive the sequential behavior of an arbitrary-sized accumulator.

5.2.13 Design rule checking with BDDs

As part of our research in symbolic Boolean manipulation, we have begun investigating new
applications of Binary Decision Diagrams (BDDs) and related data structures. BDDs have
proved successful in representing the logic functions for digital circuits for a variety of CAD
tasks. Itis therefore natural to see what other applications could profit from BDDs.

FINAL REPORT 1993-1999 ' SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT 5-19

We have implemented basic mask checking operations using algorithms that operate directly on
the BDD data structures. These algorithms can exploit the sharing in the BDD structure to avoid
repeated checking of identical geometric structures. Unfortunately, our initial experiments in-
dicate that our algorithms are not competitive with existing mask checking algorithms, such as
those implemented by Magic. The degree of sharing in the BDDs and the ability of our al-
gorithms to exploit it are insufficient to make up for the time and space requirements of BDD
manipulation. We plan to study more sophisticated ways of mapping layouts to BDDs so as to
increase the degree of sharing.

5.2.14 Quantitative characteristics of real-time systems

A number of algorithms have recently been proposed for verifying the behavior of finite-state,
real-time systems. These algorithms assume that timing constraints are given explicitly in some
notation like temporal logic. Typically, the designer provides a constraint on response time for
some operation, and the verifier automatically determines if it is satisfied or not. Unfortunately,
these techniques do not provide any information about how much a system deviates from its
expected performance, although this information can be extremely useful in fine-tuning system
behavior. :

We propose algorithms to compute quantitative timing information, such as exact upper and
lower bounds on the time between a request and the corresponding response. Our algorithms
provide insight into how well a system works, rather than just determining whether it works at
all. They enable a designer to determine the timing characteristics of a complex system given
the timing parameters of its components. This information is especially useful in the early
phases of system design, when it can be used to establish how changes in a parameter affect the
global behavior of the system.

We model a real-time system as a labeled state-transition graph, where each path corresponds to
an execution trace of the actual system. This graph is implemented internally using binary deci-
sion diagrams (BDDs), which generally produce a very compact representation. By employing
symbolic model-checking techniques, we are able to handle extremely large state spaces with up
to 1030 states efficiently. We show how to determine the minimum and maximum length of all
paths leading from a set of starting states (representing the request) to a set of final states
(representing the response). We also present algorithms that calculate the minimum and the max-
imum number of times a specified condition can hold on a path from a set of starting states to a
set of final states. These algorithms are also extended to timed transition graphs (TTG), a model
in which transitions take more than one time unit to occur. We believe that the techniques
developed can be adapted to other models of computation as well.

Other approaches for analyzing real-time system exist. For example, the rate monotonic schedul-
ing theory (RMS) defines a priority assignment algorithm that guarantees optimal response time.
The RMS theory proposes a schedulability test based on total CPU utilization; a set of processes
(which have priorities assigned according to RMS) is schedulable if the total utilization is below
a computed threshold. If the utilization is above this threshold, schedulability is not guaranteed.
Moreover, this analysis only considers certain types of processes with limitations, for example,
on periodicity and synchronization. Another approach to schedulability analysis uses algorithms
for computing the set of reachable states of a finite-state system. The algorithms construct the
model with the added constraint that whenever an exception occurs (e.g., a deadline is missed)

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-20 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

the system transitions to a special exception state. Verification consists of computing the set of
reachable states and checking whether the exception state is in this set. No restrictions are im-
posed on the model in this approach, but the algorithm only checks if exceptions can occur or
not.

We develop an analysis method that does not impose any restriction except that the system be
modeled as a set of processes that run in parallel and are defined by state-transition graphs. For
example, the actual functional behavior of each process can be modeled and analyzed.
Schedulability is determined by computing the minimum and maximum execution times for all
processes. The process set is schedulable if and only if each process is guaranteed to finish ex-
ecution before its next period starts. Our technique always determines if the set of processes is
schedulable or not, unlike RMS analysis, which may not provide any schedulability information
if utilization is above the computed threshold. If the processes are not schedulable, our al-
gorithms determine which specific deadlines are missed and by how much. When no deadline is
missed, the same results provide response times for each process, an important performance
measure for real-time systems.

To demonstrate how our tools work, we verify a simplified aircraft control system used in
military airplanes. It is extremely important that time bounds are not violated in such systems.
Because of the risks involved in the failure of an aircraft, only conservative approaches to design
and implementation are routinely used. Many modern.-techniques for software design such-as
formal methods are not commonly employed. We believe that formal verification can be very
useful in increasing the reliability of these systems by assisting in the validation of schedulability
and response times of the various components.

The aircraft control system can be characterized by a set of sensors and actuators connected to a
central controller. It analyzes sensor data and control the actuators. Our model describes this
controller and determines whether its timing constraints are met. The requirements used are
similar to those of existing military aircraft. The aircraft controller is divided into systems and
subsystems, each of which performs a specific task in controlling the airplane:

® Navigation: Computes aircraft position.

* Radar Control: Receives and processes data from radars. It also identifies targets
and target position. :

* Radar Warning Receiver: This system identifies possible threats to the aircraft.
® Weapon Control: Aims and activates aircraft weapons.
* Display: Updates information on the pilot's screen.
® Tracking: Updates target position. Data from this system is used to aim the weapons.
* Data Bus: Provides communication between processor and external devices.
Timing constraints for each subsystem are derived from factors such as required accuracy,
human response characteristics and hardware requirements. In order to enforce the different

timing constraints of the processes, priority scheduling is used. The priority assignment has been
done according to the rate monotonic scheduling theory.

We have implemented this control system in the SMV language. The SMV model checker has
been used to verify its functional correctness, while its timing correctness has been checked

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT 5-21

using the quantitative algorithms described. In order to optimize response time, we have im-
plemented a pre-emptive scheduler. However, pre-emptability is a feature that may not always be
available. Nonpre-emptive schedulers are easier to implement, and allow for simpler programs
but usually increase response time for higher priority processes. To assess the effect of preemp-
tion in our system we have also implemented a non-preemptive scheduler.

Using the model described above, we were able to compute the schedulability of the system.
This is one of the most important properties of a real-time system. It states that no process will
miss its deadline. We were able to determine that the process set is schedulable using preemptive
scheduling. From our results we could also identify many important parameters of the system.
For example, most processes take less than half their required time to execute. This indicates that
the system is still not close to saturation, although the total CPU utilization is high.

Moreover, our results showed that preemption does not have a big impact on response times in
this example. Except for one process. all others maintain their schedulability if a non-
preemptive scheduler is used. If a preemptive scheduler were expensive, reducing the CPU
utilization slightly might make the complete system schedulable without changing the scheduler.
By having such information, the designer can easily assess the impact of various alternatives to
improve the performance, without having to change the implementation.

t : The computation of quantitative characteristics also provided other valuable results about the
} system being modeled, such as:

o The overhead associated with preemption by other processes. This information is
extremely important for determining the amount of priority inversion in a system.

e How fast a subsystem responds to an event. For example, in this model, pressing the
fire button generates a complex sequence of events before the weapons are actually
fired. We were able to determine the overhead imposed by the firing protocol and
how it affects the overall response time of the system.

The results computed by our algorithms provide hints about the real-time system behavior that
can be useful in improving its performance. We have found this approach to be very flexible and
we believe that our method can be extremely useful to designers during the development of real-
time systems. We are confident that these techniques will prove practical in the verification of a
variety of other realistic designs.

5.2.15 Counter-examples and witnesses in symbolic model checking

Complex state-transition systems occur frequently in the design of sequential circuits and
protocols. During the past ten years, researchers at Camegie Mellon have developed an alter-
native approach to verification called temporal-logic model-checking. In this approach
specifications are expressed in a propositional temporal logic, and circuit designs and protocols
are modeled as state-transition systemns. An efficient search procedure is used to determine
automatically if the specifications are satisfied by the transition systems.

One of the most important advantages of model checking over mechanical theorem provers or
proof checkers for verification of circuits and protocols is its counterexample faciliry. Typically,
the user provides a high level representation of the model and the specification to be checked.
The model-checking algorithm either terminates with the answer rrue, indicating that the model

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

§5-22 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

satisfies the specification, or gives a counter-example execution that shows why the formula is
not satisfied. The counter-examples can be essential in finding subtle errors in complex designs.

The main disadvantage of model checking is the state explosion that can occur if the system
being verified has many components that can make transitions in parallel. Recently, the size of
the transition systems that can be verified by model checking techniques has increased dramati-
cally after the introduction of ordered binary decision diagrams (OBDDs). By applying this tech-
nique verification of systems that have more than 10190 states has become possible. However,
finding counter-examples is significantly more difficult when OBDDs are used in model check-
ing instead of explicit state enumeration techniques, especially when fairness constraints are in-
volved.

Although finding counter-examples is extremely important, as far as we know, there is no
description of how to do this in the literature on model checking. We have developed an ef-
ficient algorithm to produce counter-examples and witnesses for model checking algorithms.
The algorithm is, in fact, the one that is used in the SMV model checker developed at Carnegie
Mellon and works quite well in practice. We show how the counter-example facility can be used
to debug a subtle asynchronous circuit design. We also discuss how to extend our technique to
more complicated temporal formulas. This extension makes it possible to find counter-examples
for verification procedures based on showing language containment between various types of
o-automata. . ’

5.2.16 Extraction of state machines from transistor-level circuits

Many formal verification tools, including the SMV symbolic model checker, operate on a finite
state model of the system where each transition corresponds to a complete clock cycle. On the
other hand, low-level circuit models, €.g., at the gate or transistor level, utilize a fine-grained
timing model. Typically, each state transition represents one level of gate delay. Multiple tran-
sitions are required for each phase of the clock cycle. An automatic tool for extracting a cycle-
level model from a detailed circuit representation would bridge this gap. We have shown that
our symbolic simulation tools, developed for detailed circuit verification. can be operated to
generate a cycle-level circuit model. Given a circuit representation (as a transistor netlist), a
description of the clocking, and a specification of the /O signaling, our program can automati-
cally identify the state elements in the circuit and generate their next state functions. Note that
the user need not explicitly identify the circuit latches. The operation of the program proceeds as
follows: ' ,

L. The transistor circuit is processed by the Tranalyze program to generate a
logically-equivalent gate-level representation. The generated circuit faithfully cap-
tures such switch-level effects as dynamic charge storage and bidirectional signal
flow.

2. All zero-delay cycles in the gate network are broken by inserting unit delays.
Heuristics are used in an attempt to minimize the number of delays inserted.

3. Treating the delay element outputs as the maximal set of state variables, next-state
functions are derived by symbolically simulating the circuit according to the
specified timing and /O signalling. The simulator uses BDDs to represent the
symbolic functions.

4. The actual state variables are identified by starting with the output functions and
iteratively adding the dependent variables.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT 5-23

5. The BDDs for all next state and output functions are translated into an SMV
description of the cycle-level model.

We have successfully applied the tool to a number of circuits including static RAMs, stacks, and
microprogram controllers. We have found the program quite successful at identifying a minimal
number of state elements and at generating compact cycle-level models.

5.2.17 Verification of arithmetic circuits

Proving the correctness of arithmetic operations has always been an important problem. The im-
portance of this problem has been recently underscored by the highly-publicized division error in
the Pentium processor. Some people have estimated that this error cost Intel almost 500 million
dollars. We have verified a division circuit that implements the floating point IEEE standard.
The circuit uses a radix-four SRT division algorithm that is similar to the one used in the Pen-
tium. The algorithm looks ahead to find the next quotient digit in parallel with the generation of
next partial remainder. An 8-bit ALU estimates the next remainder’s leading bits. A quotient
digit look-up table generates the next quotient digit depending on the leading bits of the es-
timated remainder and the leading bits of the divisor.

We formalize the circuit and its correctness conditions as a set of algebraic relations over the
rational numbers. These algebraic relations correspond closely to the bit-level structure of the
circuit, and could have been generated mechanically from a hardware description. Most of the
hardware for the SRT algorithm can be described by linear inequalities. We have proved the
correctness of the circuit fully automatically using a powerful theorem prover called Analytica
that we have developed. Analytica is the first theorem prover to use symbolic computation tech-
niques in a major way. It is written in the Mathematica programming language and runs in the
interactive environment provided by this system. Compared to Analytica, most theorem provers *
require significant user interaction. The main problem is the large amount of domain knowledge
that is required for even the simplest proofs. Our theorem prover, on the other hand, is able to
exploit the mathematical knowledge that is built into the symbolic computation system and is
highly automatic.

5.2.18 Verification of arithmetic circuits with binary moment diagrams

We have developed a new method for verifying hardware implementations of arithmetic func-
tions such as integer multiplication. Multipliers are not amenable to existing verification
methods based on BDDs. The BDD representations of the Boolean functions for multiplication
grow exponentially with the word size. This places a practical word size limit of around 16 bits
on this approach, yielding data structures totalling 0.5 Gigabytes, with the size more than dou-
bling with each additional bit.

The newly developed approach involves a hierarchical methodology. At the low level, basic
building blocks such as adders. Booth encoders, and add-steppers are given at the bit level in
terms of logic gate networks. These blocks are then abstracted to a word level, viewing each
data word as encoding an integer (fixed point) or a rational (floating point) number. The word
level functions for the blocks are then composed to determine the overall circuit function.

A key to the success of this approach has been the development of the Binary Moment Diagram

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-24 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

(BMD) data structure for representing word-level functions. BMDs are similar to BDDs, but
have the property that they can represent functions such as multiplication efficiently.

To date a number of integer multiplier designs with word sizes up to 256 bits have been verified.
The method can deal with the numerous circuit design techniques used, including carry-save
addition, multiplier recoding, and sign bit correction.

Other promising applications of BMDs include symbolic methods for analyzing large Markov
systems and symbolic manipulation of polynomial expressions.

5.2.19 Parallel BDD manipulation :

Although the use of BDDs has greatly expanded the complexities of systems that can be
automatically verified, the high memory requirements still limit their applicability. The most
efficient BDD packages require in total around 22 bytes per BDD node, placing a limit of 5-10
million nodes before the physical memory space is exceeded. Beyond this, the performance
becomes unacceptable due to thrashing of the virtual memory system.

Many researchers have attempted to map BDDs onto various parallel or distributed machines.
Thus far, most of these efforts have been disappointing: speed-ups have been at best small and in
Some cases nonexistent. On the other hand, these implementations should be evaluated more on
their ability to expand capacity rather than on their speed up. By this measure, modest, but not
overwhelming, successes have been achieved.

We are investigating a new partitioning of BDD manipulation onto multiple processors. We
believe this approach will greatly increase the capacity while potentially providing some
speedup. In particular our implementation will map onto a linear array of processors, with each
processor responsible for the nodes labeled by a contiguous subrange of the variables. The ap-
plication program will issue requests to the processor at one end of the array. These requests
will cause activity to propagate toward the other end, corresponding to the recursive invocations
of BDD algorithms. Activity will then propagate back, corresponding to the returning recursive
calls. '

To exploit the parallel capacity of the array, the application must pipeline its requests and
thereby hide the latency between when requests are sent to the array and when the response is
received. We believe this can be done readily for most BDD applications and have begun im-
plementing this approach using Dome, a parallel object library built atop PVM.

5.2.20 Reactive system verification

A reactive system consists of a number of independent agents communicating and synchronizing
according to some protocol. Rather than describing the exact behavior of such a system, a
specification consists of a set of general properties that the agents and the protocol must fulfill.
For example, a distributed, shared-memory system contains a number of bus controllers,
memories, and caches interacting according to a cache coherency protocol. The specification
states (without fixing the exact system behavior) that the effects of read and write operations
must satisfy some general consistency properties. '

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION. AND PROGRAM DEVELOPMENT

2
[
(7]

Bus performance analysis

Most verification algorithms assume that timing constraints are given explicitly in some notation
like temporal logic. Typically, the designer provides a constraint on response time for some
operation. and the verifier automatically determines if it is satisfied or not. Unfortunately. these
techniques provide no information about how much a system deviates from its expected perfor-
mance, although this information can be extremely useful in fine-tuning system behavior.

We have developed algorithms to compute quantitative timing information. such as exact upper
and lower bounds on the time between a request and the corresponding response. Our al-
gorithms provide insight into how well a system works, rather than just determining whether 1t
works at all. They enable a designer to determine the timing characteristics of a complex. sys-
tem given the timing parameters of its components. This information is especially useful in the
early phases of system design, when it can be used to establish how changes in a parameter
affect the global behavior of the system. These algorithms determine the minimum and max-
imum length of all paths leading from a set of starting states to a set of final states. We also
present algorithms that calculate the minimum and the maximum number of times a specified
cendition can hold on a path from a set of starting states to a set of final states.

This method can produce several types of information. time to events is computed by making
the set of starting states correspond to the event and the set of final states correspond to the
response. Schedulability analysis can be done by computing the response time of each process
in the system and comparing it to the process deadline. Performance can be determined in a
similar way. Preliminary versions of the algorithms have been incorporated into the SMV model
checking system and have been used to verify several nontrivial systems, including the PCI Lo-
cal bus.

PCl is a high performance bus architecture designed to become an industry standard for current

- and future computer systems. It is used primarily in systems based on Intel Pentium or DEC

Alpha processors. We have modelled the PCI bus. concentrating on its temporal characteristics,
and analyzed its performance. We have computed transaction response time in various con-
figurations of the system and we have been able to bound the response time of a PCI transaction
as well as to produce detailed information about each phase of the communications protocol. In
addition. we have computed the overhead imposed by arbitration. bus acquisition. and other
phases of the protocol. This type of information allows the designers to understand the behavior
of the system more accurately than the information generated by traditional verification methods.
Our results also uncovered subtleties in the behavior of the system that could have been difficuit
to find otherwise.

Multilevel verification

We have developed a new methodology for formal verification of hardware designs by using a
technique that combines the strengths of symbolic trajectory evaluation and symbolic model
checking. In earlier work we developed a methodology for formally verifying data-intensive
circuits. That methodology involves specifying a system by giving high-level assertions over
abstract states and state mapping for the abstract states. The assertions define a set of transitions
in an abstract Moore machine. We express these assertions in Hardware Specification Language
(HSL). These assertons are quite abstract, and hide low level details such as detailed signal
timing and pipelining. From the HSL assertions and the state mapping, simulation patterns are

SOFTWARE SCIENCES AND ENGINEERING RESEARCH : FINAL REPORT 1993-1999

5.26 SPECIFICATION. VERIFICATION. AND PROGRAM DEVELOPMENT

generated for a symbolic trajectory evaluator and the circuit is verified as implementing the state
machine defined by the assertions. This technique can efficiently verify systems that can be
viewed as state transformation systems—systems, such as microprocessor data path and memory
circuits, which have well-defined state. However. this methodology has a drawback stemming
from its limited notion of time. Since a HSL assertion involves only the current state and its
successor, many important temporal properties of a system, such as absence of deadlock, can't
be easily expressed.

This limitation can be overcome by checking the state transition system defined by the HSL
assertion against specifications in the temporal logic CTL. In our verification methodology we
first verify that a switch-level or a gate-level circuit implements the state machine defined by the
HSL assertions. Next we do CTL model checking on that machine. Assertions are abstract
description of the systems that abstract away many low-level details of the circuits— con-
siderably simplifying the finite state system which we must model-check. as compared to one
derived directly from the circuit. Also. having an HSL assertion description makes it possible to
incorporate automatically abstraction techniques to simplify the system that is model checked.
Our methodology supports a modular design discipline in which a system composed of different
units at different levels of abstraction can be verified. Currently.we have a translator which
renders an HSL specification into a description of a finite state system in SMV. We have
verified temporal properties of many small circuits including FIFO's with nondeterministic con-
trollers. - . :

5.3 Formal verification of sequential processors

This component of the grant concentrates on formally verifying that a low-level circuit design
implements a high-level specification for a class of systems known as **sequential processors.”’
Systems in this class operate on an externally visible, stored state. following a single thread of
control. Examples include both complete microprocessors, as well as subsystems such as
memories, datapath. and floating-point units.

For verifying such systems. we employ a form of symbolic simulation known as **symbolic
trajectory evaluation.”” The verifier effectively simulates the behavior of the circuit over a set of
patterns encoding all possible state and input values. derived from a high-level specification of
the intended system behavior. This approach can also operate with low-level system models
capturing such effects as detailed timing and transistor-level behavior. We are applying this
approach to the verification of pipelined microprocessors as well as to memory arrays.

Our verifiers use graph representations of discrete functions to encode the symbolic state
representations. These include Binary Decision Diagrams (BDDs) for representing bit-level cir-
cuit operation, and Binary Moment Diagrams (BMDs) for representing the word-level behavior
of arithmetic circuits.

5.3.1 Applications of symbolic trajectory evaluation

In [Bryant 95a] we show how symbolic trajectory evaluation could be usefully applied to circuits
such as the floating point divider in the Intel Pentium(TM) microprocessor. It is impractical to
verify multiplier or divider circuits entirely at the bit-level using BDDs. because the BDD
representations for these functions grow exponentially with the word size. It is possible,

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

however, to analyze individual stages of these circuits using BDDs. Going beyond verification,
we show that bit-level analysis can be used to generate a correct version of the table.

In [Pandey et al 96] we showed that symbolic trajectory evaluation can be used to verify memory
arrays, consisting of storage with embedded logic. Examples of such arrays include random-
access memories, multi-ported register files, caches, and content-addressable memories. This
class of circuit is typically designed by hand at the transistor level, and hence the verification
tool must be capable of dealing with low-level circuit models and very large state spaces (over
10,000 bits of state). Our verifier succeeds on this task, since it uses a switch-level simulation
model and efficient encoding methods to represent the large state spaces.

5.3.2 Symbolic representations of discrete functions

In [Bryant 96] we describe work both at Carnegie Mellon and elsewhere on representing discrete
functions with graph representations. This work builds on our pioneering work on Binary Deci-
sion Diagrams. Our recent work in this area involves the use of Binary Moment Diagrams
(BMDs) to represent functions mapping Boolean variables to numeric values. Such functions
can be used to express the behavior of arithmetic circuits operating on words of data. We are
currently implementing an efficient BMD package that will improve performance by dynami-
cally reordering the variables as well as dynamically changing function decompositions.

5.3.3 Automatic verification of sequential circuit designs

A model checker for a VHDL subset

In a previous stage of this project a core subset of VHDL (including the fundamental
synchronization and communication paradigms) was defined. The next step has been the
development of a VHDL front-end that produces an intermediate representation stored on disk
and used by subsequent phases of the model checker. The prototype front-end is able to parse
syntactically- and semantically-correct VHDL descriptions, and has been tested and
demonstrated using a test suite.

We have also continued work on the elaboration algorithm, which automatically builds a sym-
bolic, BDD-based model for a given VHDL architectural description. Models elaborated in this
manner represent the behavior of the corresponding VHDL description, as defined in the lan-
guage reference manual. A state of the model corresponds to the state reached by the VHDL
description at the end of a simulation cycle. Hence, a transition of the model represents the effect
of a VHDL simulation cycle. Therefore, it is possible to study the behavior of the VHDL
description using symbolic simulation techniques on the generated model. In addition, this
modeling approach can be used to prove temporal properties or check equivalence of VHDL
models. A first version of this elaboration procedure has been implemented and demonstrated.

Performance verification of time-critical applications

We began studies on the formal aspects of Verus, the language used to describe time-critical
circuits, and have completed a first draft of the semantics of the language. Work on the Verus
compiler continued, using results of this first draft. Most of the aspects of the core language have
already been defined. The implementation of the compiler already incorporates these aspects,
and non-trivial programs can already be compiled.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-28 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

We began research on selective quantitative analysis. This research originated from the obser-
vation that not all execution sequences of a model are equally interesting. In many cases it is
more important to observe the behavior of the system under specific conditions. For example,
one might be interested in determining the response time to an event provided that the rest of the
system is not overloaded. This would produce the response time for an average situation, instead
of the response time for the worst case. This result can provide important information about

system behavior that might be difficult to obtain otherwise.

Selective quantitative analysis is one method to produce this type of information. It allows the
user to specify a condition (as an LTL formula) that must be satisfied by the execution paths of
interest. Using LTL model checking techniques, the model is then restricted to only those paths
that satisfy the condition, and quantitative analysis is performed on the restricted model.

Reasoning about parameterized circuit design: induction

Traditionally, model checking has only been applied for verifying single finite-state systems.

However, most hardware designs are parametrized. For example, the width of the integers is a

parameter while designing a multiplier. These parameterized designs give rise to infinite family

of finite-state systems. Our aim is to reason automatically about entire families of state-
transition systems.

In our formalism, these families are described using context-free network grammars. We express
state properties using regular languages. Our method finds an invariant using the structure of the
grammar and the regular languages describing the state properties. This invariant is found by
constructing an abstraction function based on the regular language and then using this abstraction
function to derive the invariant.

We have verified two non-trivial families of circuits using our techniques. Our earlier idea was
only applicable to synchronous models (Moore Machines). We have extended our techniques to
handle asynchronous models as well. We have also developed an unfolding technique which
will help us in deriving invariants. We plan to look at more examples.

Reasoning about parameterized circuit design: symmetry

Most large circuits are highly symmetric. For instance, it is possible to find symmetry in
memories, caches, register files, bus and network protocols—any type of hardware containing
replication of structures. It should be possible to exploit this symmetry in order to avoid search-
ing the entire state space of the circuit or to reduce the size of the BDDs needed to represent the
set of states. Our goal is to reduce the size of the state space explored during model checking by
exploiting the inherent Symmetry present in the system. Symmetries in systems are described by
permutation groups acting on finite sets. The underlying symmetry group induces an equiv-
alence relation on the set of states. Since the BDD size for this equivalence relation can be quite
large, we must resort to certain implicit techniques so that we don’t have to build the BDD for
the equivalence relation. One such implicit method uses multiple representatives from each
equivalence class.

We have developed techniques to do reachability with multiple representatives. Our objective is
to develop techniques that enable us to do full CTL model checking with multiple represen-
tatives. We have applied our model checking techniques with multiple representatives to a
simple cache coherence protocol based on the FutureBus+ IEEE protocol. The FutureBus+

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

l>—: :

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

protocol describes a scheme by which cache coherence can be maintained in a multiprocessor
system. In the experiments we performed, we varied the number of processors and the number
of cache lines. The savings in the BDD sizes by using symmetry were substantial. For example,
in the configuration with 4 processors and 8 cache lines, we achieved a factor of 14 reduction in

the BDD sizes.

We are currently implementing a model-checker, SYMM, which will support both explicit and
symbolic state representations. SYMM will also allow the user to specify the symmetries of the
system being verified. Using SYMM, we hope to compare explicit state representation (using
symmetry) against symbolic state representation, which uses Binary Decision Diagrams (BDDs).

Compositional reasoning

Essentially, compositional reasoning allows one to reason about individual components of a sys-
tem by making certain assumptions about a component's environment. As a result, we do not
have to explore the entire state space of the system to verify the properties of interest. Instead,
we determine properties of individual components and then use these properties to infer proper-
ties of the entire system. This approach, called "rely-guarantee” reasoning, has been used to
verify synchronous circuits. We are currently investigating how to extend this paradigm to
asynchronous circuits. '

i

First, we continue to develop a more natural model of asynchronous computation that would
allow for this type of reasoning. In our model. components have interleaved execution except
that common actions can only be performed by synchronization. In other words, at any instant,
either machine is allowed to perform an action (make a transition) unless that action also belongs
to the other component’s action set — in which case neither component may perform the action
unless they perform it simultaneously (both machines make a transition).

We are also investigating how to compute a simulation relation between machines. Intuitively,
M is related to N if every behavior or computation of M is a behavior or computation of N. This
relation has the property that if M and N are related, then every property of N (every formula
true in N) is a property of M (is true in M). Because we are concerned with asynchronous
composition, two problems immediately stand out. First. we need to take into account fairness.
We most probably want to disallow infinite computations in which a component only makes a
finite number of steps. Second, because of the interleaving semantics, a component may remain
in a state while the entire machine takes a step. If we are only interested in the behavior of the

| one component, then this step becomes what is called a stutter step (the machine takes a step, but

| the state does not change). Our simulation relation must therefore take into account the pos-

sibility of such stuttering.

Despite much added detail and complexity, this model has similarities with the synchronous
case. In particular, this model has the same properties about composition and simulation that
allowed for rely-guarantee style reasoning in the synchronous case. This would then provide a
framework for compositional reasoning for both synchronous and asynchronous circuits.

SOFTWARE SCENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-30 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

5.3.4 Extensions of symbolic trajectory evaluation

In [Jain et al. 96] we describe a methodology and prototype tools for verifying nondeterministic
implementations of systems with deterministic semantics. Such systems are found in many
modern designs, where different units interact with one another via handshaking protocols, pos-
sibly stalling until operands or structural resources are available. Formal verification requires
analyzing the system behavior under all possible timings of these interface signals. Our ap-
proach involves composing state machine descriptions of the individual signalling protocols to
form a system control graph. We have extended our symbolic trajectory evaluator, a form of
symbolic simulator, to verify all possible execution paths in the control graph. Symbolic vari-
ables are used to encode nondeterministic choice points, while fixed point algorithms are used to
handle the self-loops representing stall conditions. This new approach has been applied to the
fixed-point unit of a PowerPC implementation obtained from IBM. Verifying the correct
processing of an OR instruction involves constructing a control graph of 75 state vertices and
evaluating over 500 possible execution paths.

5.3.5 Hierarchical arithmetic circuit verification

In [Chen and Bryant 96] we describe an arithmetic circuit verifier ACV, in which circuits ex-
pressed in a hardware description language. also called ACV, are symbolically verified using
Binary Decision Diagrams for Boolean functions and multiplicative Binary Moment Diagrams
(*BMD:s) for word-level functions. A circuit is described in ACV as a hierarchy of modules.
Each module has a structural definition as an interconnection of logic gates and other modules.
Modules may also have functional descriptions, declaring the numeric encodings of the inputs
and outputs, as well as specifying their functionality in terms of arithmetic expressions.
Verification then proceeds recursively, proving that each module in the hierarchy having a func-
tional description, including the top-level one, realizes its specification. The language and the
verifier contain additional enhancements for overcoming some of the difficulties in applying
*BMD-based verification to circuits computing functions such as division and square root.

ACV has successfully verified a number of circuits, implementing such functions as multiplica-
tion, division, and square root. with word sizes up to 256 bits. BCD-to-Binary conversion cir-
cuits with word sizes up to 18 decimal digits have also been verified in reasonable time.

5.4 Parallel programming with NESL

This component of the grant concentrates on greatly simplifying the task of programming paral-
lel machines. We released a new version (3.2) of our programming language NESL. We have
made this release available via the WWW via the NESL home page
http://www.cs.cmu.edu/~scandal /nesl.html

A paper describing the language and the motivation behind it appears in [Blelloch 96]. We have
written several papers that describe both the implementation ideas behind NESL and various ap-
plications that have been coded in NESL. The results of these papers are outlined below. We
have also released a library of algorithms written in NESL, available off of the NESL home page,
ranging from mesh partitioners to N-body codes. The PC++ group at Indiana has been looking at
the nested parallelism ideas in NESL for use in their language. In our work we argue that NESL
allows for much more concise and clean description of parallel applications than either HPF or
MPL

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT 5-31

Our research is composed of two main components: (1) research in how to implement nested
parallelism efficiently and (2) research on how various applications can use nested parallelism.
Here we list recent results in both areas.

5.4.1 Implementing nested parallelism

In [Hardwick 96] we present work in progress on a new method of implementing irregular
divide-and-conquer algorithms on distributed-memory multiprocessors. The algorithms are
described at a very high level in a nested data-parallel language model. Then, using a mixture of
compile-time and run-time techniques, they are efficiently translated onto code for distributed
memory machines. The main features discussed are:

e Recursive subdivision of asynchronous processor groups to match the change from
data-parallel to control-parallel behavior over the lifetime of an algorithm,

e Switching from parallel code to serial code when the group size is one (with the
opportunity to use a more efficient serial algorithm),

e A simple, manager-based. run-time, load-balancing system.
Sample algorithms translated from the high-level, nested, data-parallel language NESL into C and
MPI using this method are significantly faster than the current NESL system and show the poten-
tial for further speedup. The applications we consider are mesh partitioners, Delaunay triangula-

“tion, convex hull, and sorting.

In [Blelloch et al. 95a] we present a space-efficient scheduling algorithm for nested parallel lan-
guages. A notorious problem with the implementations of languages that supply fine-grained
parallelism is that they can use much more memory than necessary. This has been observed in
our implementation of NESL, as well as with implementations of ID, SISAL, Cilk, and Multilisp.
Without careful scheduling, the paraliel execution of a program on P processors can use a factor
of P more memory than a sequential implementation of the same program.

We present a space-efficient algorithm for scheduling tasks for which we can place strong
bounds on how much more memory the parallel implementation will require beyond a standard
sequential implementation. The scheduling algorithm is a natural implementation based on
maintaining a stack of tasks. The novel additions are a technique for delaying allocation of large
blocks of memory, the way the stack is kept synchronized, and the proof that this combination
guarantees our memory bounds. Based on these ideas, we present a provably good implemen-
tation of NESL [Blelloch and Greiner 96]. We have recently completed a preliminary implemen-
tation of these ideas on the SGI Power Challenge and have seen memory savings of a factor of
three or better. We have applied for a patent for these ideas.

[Blelloch et al. 95b] considers issues of memory performance in shared memory multiprocessors
that provide a high-bandwidth network and in which the memory banks are slower than the
processors. We are concerned with the effects on performance of memory bank contention,
memory bank delay, and the bank expansion factor (the ratio of number of banks to number of
processors), particularly for irregular memory access patterns. This work was motivated by ob-
served discrepancies between predicted and actual performance in a number of irregular al-
gorithms implemented for the Cray C90 when the memory contention at a particular location is
high. The work also applies to machines such as the Tera machine and to some extent to bus-
based SMPs, such as the SGI Power Challenge.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-32 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

We study how to implement "futures” efficiently in [Greiner and Blelloch 96]. Speculation
using futures (as in Multilisp or Cool) or "leniency” (as in ID or Ph) is a common technique to
expose parallelism in programs. Current implementations of these languages use queues for
maintaining tasks that suspend waiting for a value of a variable (a future). When the value be-
comes available, the queue of tasks is reactivated. The problem with this approach is in how to
implement the queue. Standard implementations use linked lists to maintain the queue. This can
sequentialize code that appears parallel, since tasks have to be added and removed from the
queue sequentially. Unfortunately, trees also do not seem to work, since it is costly to determine
in parallel where in the tree a task should be added. In our work we have developed a data-
structure based on dynamic arrays for efficiently implementing the queues in parallel (the arrays
grow in powers of two as more tasks are added). We use amortized analysis to guarantee that the
cost of maintaining the queues is slight.

5.4.2 Applications and algorithms

We describe in [Blelloch et al. 96] an efficient divide-and-conquer parallel algorithm developed
and implemented in NESL. Delaunay triangulation is one of the most used methods for surface
interpolation and the generation of unstructured finite-element meshes. Developing a practical
parallel algorithm for Delaunay triangulation, however, has been notoriously hard because of the

~ irregular and dynamic nature of the efficient algorithms. Although there have been many

theoretical algorithms for the problem and some implementations based on bucketing that work
well for uniform distributions, there has been little work on implementations for general distribu-
tions. In this work we have developed a divide-and-conquer parallel algorithm that does little
more total work than the best sequential algorithm. Furthermore it quickly divides the problem
into smaller problems which each can be run sequentially on separate processors. Our experi-
ments use non-uniform distributions which appear in various scientific applications. -

[Greiner and Blelloch 95] details work on comparing various algorithms for finding graph con-
nectivity. Graph connectivity is an important subroutine in many applications, including com-
puter vision (region labeling) and the Swendsen Wang algorithm for simulating Ising models. In
this work we compare many different algorithms. The comparison not only looked at final run-
ning times, but also studied how various parameters such as communication, number of nodes
processed, and number of edges processed were effected by the algorithm and the type of graph.
All experiments were done using NESL. :

We have developed a new class of preconditioners which we call support tree preconditioners

([Gremban et al. 95]). Solution of partial differential equations by either the finite element or
the finite difference methods often requires the solution of large, sparse linear systems. When
the coefficient matrices associated with these linear systems are symmetric and positive definite,
the systems are often solved iteratively using the preconditioned conjugate gradient method.

We have developed a class of support tree preconditioners that are based on the connectivity of
the graphs corresponding to the coefficient matrices of the linear systems. These new precon-
ditioners have the advantage of being well-structured for parallel implementation, both in con-
struction and in evaluation. We evaluated the performance of support tree preconditioners by
comparing them against two common types of preconditioners: those arising from diagonal scal-
ing and from the incomplete Cholesky decomposition. We did the original implementation in
NESL and then generated an optimized version for multiple processors of the Cray C90.We show

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

| SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT 5-33

empirically that the convergence properties of support tree preconditioners are similar, and supe-
rior in many cases, to those of incomplete Cholesky preconditioners, which in turn are superior
to those of diagonal scaling.

Support tree preconditioners require less overall storage, less work per iteration, and yield better
parallel performance than incomplete Cholesky preconditioners. In terms of total execution time,
support tree preconditioners outperform both diagonal scaling and incomplete Cholesky precon-
ditioners. Hence, support tree preconditioners provide a powerful, practical tool for the solution
of large sparse systems of equations on vector and parallel machines.

In a special 50th anniversary issues of ACM Computing Surveys we were invited to contribute a
paper that summarizes the current state-of-the-art in parallel algorithms [Blelloch and Maggs
96]. The paper will appear with many other papers that summarize other fields in computer
science. It is a condensed version of the chapter on parallel algorithms that will appear in the
CRC Handbook on Computer Science.

5.5 Automatic verification of sequential circuit designs

i
5.5.1 Automatic determination of time bounds for sequential circuits
We developed a method to use quantitative symbolic algorithms to analyze the behavior of a
system. This method computes minimum and maximum delays between the occurrence of two
events, as well as the number of times a specified condition occurs in such an interval. A more
refined analysis is also possible by restricting the model to consider execution paths that only
satisfy a certain condition. This can help in understanding how the system reacts to different
conditions. To strengthen our verification methodology, we have extended the method to permit
interval model checking, that is, checking a formula with respect to finite intervals. We have
also extended the method by defining a new language, Verus, which has been specifically
tailored to simplify the expression of real-time properties and constraints. Finally, we have
begun integrating all these ideas into a tool for the analysis and verification of timing properties
of sequential circuits. To demonstrate the efficiency of this method in the verification of com-
plex systems, we have applied it to several real applications. The Verus compiler has had its first
internal release. Nontrivial programs can be written, and interesting properties of such systems
can be verified. ‘

5.5.2 Reasoning about parameterized circuit designs

We have developed a technique to verify properties about infinite families of finite-state sys-

tems. For example, we want to reason that a bus protocol works correctly regardless of the num-

ber of processes connected on the bus. The general technique works by finding invariant proces-

ses for the infinite family of finite-state systems. Intuitively, an invariant process captures the
| relevant behavior of the entire family. We have used invariant processes to verify a family of
token rings and parity trees. We are currently designing a system called Induct that will allow us
to verify large examples. Induct will allow the user to describe an infinite family of finite-state
systems and a property. Induct will automatically try to produce an invariant process for the
described family of finite-state systems. We have also extended our ideas to handle fairness
constraints. For example, we may want to verify that a family of token rings treats its com-

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-34 ' SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

ponents “‘fairly”’, i.e., a component requesting a token infinitely often should get the token in-
finitely often.

5.5.3 Word-level model checking

We have investigated two approaches for formal verification of arithmetic circuits: one based on
model checking and the other based on theorem proving. We have developed a concise
representation for functions mapping boolean vectors into integers. By combining this represen-
tation with symbolic model checking, we have introduced word-level model checking, which
technique can be applied to many arithmetic circuits. We have also used our theorem prover,
Analytica, for hardware verification. As an example to illustrate the power of these verification
techniques, we have verified a division circuit that implements the IEEE floating point standard.

5.6 Interfacing with Java

In [Hardwick and Sipelstein 96] we describe our experiences using Java as an intermediate lan-
guage for the high-level programming language NESL. First, we describe the design and im-
plementation of a system for translating VCODE — the current intermediate language used by
NESL — into Java. Second, we evaluate this translation by comparing the performance of the
original VCODE implementation with several variants of the Java implementation. The translator
was easy to build, and the generated Java code achieves reasonable performance when using a
Just-in-time compiler. We conclude that Java is attractive both as a compilation target for rapid
prototyping of new programming languages and as a means of improving the portability of exist-
ing programming languages.

5.7 Mapping of NESL onto distributed memory multiprocessors

In [Hardwick 96] we describe our work on a new method of implementing irregular divide-and-
conquer algorithms in a nested data-parallel language model on distributed-memory multiproces-
sors. The main features discussed are the recursive subdivision of asynchronous processor
groups to match the change from data-parallel to control-parallel behavior over the lifetime of an
algorithm, switching from parallel code to serial code when the group size is one (with the op-
portunity to use a more efficient serial algorithm), and a simple manager-based, runtime load-
balancing system. Sample algorithms translated from NESL into C and MPI using this method
run significantly faster than the current NESL system and show the potential for further speedup.

5.8 High performance message routing

This portion of the project investigates both theoretical and practical issues of high speed com-
munication among cooperating processors in a parallel computing environment. This challenge
has proved one of the greatest in exploiting the power of parallel computing.

5.8.1 All-to-All routing

Several recent papers have proposed or analyzed optimal algorithms to route all-to-all personal-
ized communication (AAPC) over communication networks such as meshes, hypercubes and
omega switches. However, the constant factors of these algorithms are often an obscure function

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

of system parameters such as link speed, processor clock rate, and memory-access time. In
[Stricker and Hardwick 96] we investigate these architectural factors, showing the impact of
communication style, network routing table, and most importantly, local memory system, on
AAPC performance and permutation routing on the Cray T3D.

The fast hardware barriers on the T3D permit a straightforward AAPC implementation using
routing phases separated by barriers, which improve performance by controlling congestion.
However, we found that a practical implementation was difficult, and the resulting AAPC perfor-
mance was less than expected. After detailed analysis, several corrections were made to the
AAPC algorithm and to the machine’s routing table, raising the performance from 41% to 74%
of the nominal bisection bandwidth of the network.

Most AAPC performance measurements are for permuting large, contiguous blocks of data (i.e.,
every processor has an array of P contiguous elements to be sent to every other processor). In
practice, sorting and true h-h permutation routing (where h=n/p >> 1, the number of elements per
processor) require data elements to be gathered from their source location into a buffer, trans-
ferred over the network. and scattered into their final location in a destination array. We obtain
an optimal T3D implementation by chaining local and remote memory operations together. We
quantify the implementation's efficiency both experimentally and theoretically, using the
recently-introduced copy transfer model, and present results for a counting sort based on this
AAPC implementation.) - '

5.8.2 Wormbhole routing .

In [Cole et al. 96] we describe work proving that increasing the queuing capacity of each switch
in a wormhole router — so that each physical channel can support up to Q virtual channels —
can speed the router by a factor larger than linear in Q. In particular, this work shows that, in a
wide variety of networks, a factor of D'1/Q) appears in the time required to route a set of mes-
sages, where D is the diameter of the network. This proof confirms earlier work by Dally in
which the benefit of virtual channels was demonstrated through simulations.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-36 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

5.9 Bibliography

[Beatty and Bryant 94]
Beatty, D.L. and R.E. Bryant.
Formally verifying a microprocessor using a simulation methodology.
In Proceedings of the 315t Design Automation Conference. June, 1994.

[Blelloch 96]
Blelloch, G.E.
Programming Parallel Algorithms.
Communications of the ACM, March, 1996.

[Blelloch and Greiner 94]
Blelloch, G.E. and J. Greiner.
A parallel complexity model for Junctional languages. .
Technical Report CMU-CS-94-196, Computer Science Department, Carnegie Mellon Univer-
sity,)
October, 1994.

[Blelloch and Greiner 95]
Blelloch, G.E., and J. Greiner.
Parallelism in Sequential Functional Languages.
In Proceedings of the Symposium on Functional Programming-and Computer Architecture.
June, 1995.

[Blelloch and Greiner 96]
Blelloch, G.E., and J. Greiner.
A Provable Time and Space Efficient Implementation of NESL.
In Proceedings of the ACM SIGPLAN International Conference on Functional Programming.
May, 1996.

[Blelloch and Maggs 96]
Blelloch, G.E. and B. Maggs.
Parallel algorithms.
ACM Computing Surveys, To appear, 1996.

[Blelloch and Narlikar 94]
Blelloch, G.E. and G. Narlikar.
A comparison of two N-body algorithms.
In DIMACS Implemen:ation Challenge Workshop. DIMACS, October, 1994.

[Blelloch et al. 94a]
Blelloch, G.E., S. Chatterjee, J.C. Hardwick, J. Sipelstein, and M. Zagha.
Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 1994.

[Blelloch et al. 94b]
Blelloch, GE., S. Chatterjee, and M. Zagha.
Solving linear recurrences with loop raking.
Journal of Parallel and Distributed Computing, 1994.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT 5-37

[Blelloch et al. 94c]
Blelioch, G.E., C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, and M. Zagha.
A comparison of sorting algorithms for the connection Machine CM-2.
In Communications of the ACM. ACM, 1994.

[Blelloch et al. 94d]
Blelloch, G.E., S. Chatterjee. J.C. Hardwick, M. Reid-Miller, J. Sipelstein, and M. Zagha.
CVL: A Cvector library.)
Technical Report CMU-CS-93-114, Computer Science Department, Carnegie Mellon Univer-
sity, '
February, 1994.

[Blelloch et al. 94e]
Blelloch, G.E., B.M. Maggs, and G.L. Miller.
The hidden cost of low bandwidth communication.
In U. Vishkin (editor), Developing a Computer Science Agenda for High-Performance
Computing. ACM Press, 1994.

[Blelloch et al. 95a]
Blelloch, G.E., P. Gibbons, and Y. Matias.
Provably Efficient Scheduling for Languages with Fine-Grained Parallelism.
In Proceedings of the 7th Annual Symposium on Parallel Algorithms and Architectures.
SPAA, July, 1995.)

[Blelloch et al. 95b]
Blelloch, G.E., P. Gibbons, Y. Matias, and M. Zagha.
Accounting for Memory Bank Contention and Delay in High-Bandwidth Multiprocessors.
In Proceedings of the 7th Annual Symposium on Parallel Algorithms and Architectures.
SPAA, July, 1995. '

[Blelloch et al. 96]
Blelloch, G.E., G.L. Miller, and D. Talmor.
Developing a Practical Projection-Based Parallel Delaunay Algorithm.
In Proceedings ACM Symposium on Computational Geometry. May, 1996.

[Bryant 93]}
‘Bryant, R.E.
Symbolic analysis of masks, circuits, and systems.
In International Conference on Computer Design. October, 1993.

[Bryant 95a]
Bryant, R.E.
Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification.
In International Conference on Computer-Aided Design. November, 1995.

[Bryant 95b]
Bryant, R.E.
Multipliers and Divider: Insights on Arithmetic Circuit Verification.
1995.
To appear in Computer-Aided Verification, 1995.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-38 SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

[Bryant 96]
Bryant, R.E.
Bit-Level Analysis of an SRT Divider Circuit.
In Proceedings of the 33rd Automated Design Conference. June, 1996.
Previously appeared as Technical Report CMU-CS-95-140, April 1995.

[Bryant and Chen 95]
Bryant, R.E. and Y .-A. Chen.
Verification of arithmetic functions with binary moment diagrams.
In Proceedings of the 32nd Design Automation Conference. June, 1995.
Best paper award in the category “‘Verification, Simulation, and Test’’. Also appeared as
Technical Report CMU-CS-94-160 in May, 1994.

[Bryant and Seger 94]
Bryant, R.E. and C.-J H. Seger.
Digital circuit verification using partially-ordered state models.
In International Symposium on Mulyi- Valued Logic. May, 1994,

[Bryant et al. 94]
Bryant, R.E., J.D. Tygar, and L.P. Huang.
Geometric characterization of series-parallel variable resistor networks.
IEEFE Transactions on Circuits and Svstems, November, 1994,

[Burchetal 94]
Burch. J., E.M. Clarke. D. Long, K. McMillan, and D. Dill.
Symbolic model checking for sequential circuit verification.
In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 1EEE,
April, 1994,

[Campos and Clarke 95]
Campos, S., and E.M. Clarke.
Real-Time Symbolic Model Checking for Discrete Time Models.
AMAST Series in Computing: Theories and Experiences for Real-Time System Development.
In T. Rus and C. Rattray,
World Scientific Publishing Company, 1995,

[Campos et al. 94]
Campos, S., E. Clarke, W. Marrero, M. Minea, and H. Hiraishi.
Computing quantitative characteristics of finite-state real-time systems.
In Proceedings of the 15th IEEE Real-Time Systems Symposium. 1EEE, December, 1994,
Also available as Technical Report CMU-CS-94-147.

[Campos et al. 95a]
Campos. S., E. Clarke, W. Marrero, and M. Minea.
Timing Analysis of Industrial Real-Time Systems.
In Workshop on Industrial Strength Formal Specification Techniques. 1995.

[Campos et al. 95b]
Campos, S., E.M. Clarke, W. Marrero, M. Minea, and H. Hiraishi.
Temporal Verification of Real-Time Systems.
In In IEICE Transactions on Information and Systems. IEICE, J uly. 1995.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

riw

SPECIFICATION. VERIFICATION, AND PROGRAM DEVELOPMENT

[Campos et al. 95¢]
Campos, S., EM. Clarke, W. Marrero, and M. Minea.
Versus: a Tool for Quantitative Analysis of Finite-State Real-Time Systems.
In Workshop on Languages. Compilers. and Tools for Real-Time Systems. 1995.

[Chen and Bryant 96]
Chen, Y.-A., and R.E. Bryant.
ACV: An Arithmetic Circuit Verifier.
In Proceedings of International Conference on Computer-Aided Design. ICCAD, November,
1996.

[Clarke and Zhao 93]
Clarke, E.M. and X. Zhao.
Analytica: atheorem prover for mathematica.
The Mathematica Journal3(1):56-71, 1993.

[Clarke and Zhao 94]
Clarke, E. and X. Zhao.
Combining symbolic computation and theorem proving: some problems of Ramanujan.
Automated Deduction—CADE-12., Lecture Notes in Computer Science 814.
In A. Bundy, :
Springer-Verlag, 1994.

[Clarke et al. 93]
Clarke, E.M., L A. Draghicescu, and R.P. Kurshan.
A unified approach for showing language containment and equivalence between various types
of w-automata.
Information Processing Letters46:301-308, 1993.

[Clarke et al. 94a]
Clarke, E., O. Grumberg, and K. Hamaguchi.
Another look at LTL model checking.
In Proceedings of Conference on Computer-Aided Verification. CAV, June, 1994.

[Clarke et al. 94b]
Clarke. E.. O. Grumberg, and D. Long.
Verification tools for finite-state concurrent systems.
A Decade of Concurrency - Reflections and Perspectives, Lecture Notes in Computer Science
803.
In J.W. deBakker, W.P. deRoever, and G. Rozenberg,
Springer-Verlag, 1994.

[Clarke et al. 94c]
Clarke, E.M., O. Grumberg, K. McMillan, and X. Zhao.
Efficient generation of counterexamples and witnesses in svmbolic model checking.
Technical Report CMU-CS-94-204, Computer Science Department, Carnegie Mellon Univer-
sity,
October. 1994.
Also accepted by DAC95, June 1995.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-40 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

[Clarke et al. 95a]
Clarke, EM., O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K. McMillan, and L.A. Ness.
Verification of the Futurebus+ Cache Coherence Protocol.
Formal Methods in Systems Design6:217-232, 1995.

[Clarke et al. 95b)
Clarke, EM., T. Filkorn, and S. Jha.
Exploiting Symmetry in Temporal Logic Model Checking.
Formal Methods in System Design, 1995.
To appear.

[Clarke et al. 95c¢)
Clarke, EM., O. Grumberg, and D.E. Long.
Model Checking.
Lecture Notes in Computer Science.
Springer Verlag, 1995,

[Cole et al. 96]
Cole, R.J., B.M. Maggs, and R K. Sitaraman.
On the benefit of supporting virtual channels in wormhole routers.
In Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures. -
ACM, June, 1996.

[Feldmanﬁ et al. 95]
Feldmann, A., B.M. Maggs, J. Sgall, D.D. Sleator, and A. Tomkins.
Competitive Analysis of Call Admission Algorithms Thar Allow Delay.
Technical Report CMU-CS-95-102, Computer Science Department, Camegie Mellon Univer-
sity,
January, 1995.

[Fisher and Ghuloum 94]
Fisher, A.L. and A. Ghuloum.
Parallelizing complex scans and reductions.
In Proceedings of the 1994 ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 1994,

[Ghosh et al. 95]
Ghosh, B., F.T. Leighton, B.M. Maggs, S. Muthukrishnan, C.G. Plaxton, R. Rajaraman, A.W.
Richa, R.E. Tarjan, and D. Zuckerman.
Tight Analyses of Two Local Load Balancing Algorithms.
In Proceedings of the 27th Annual ACM Symposium on Theory of Computing. ACM, May,
1995.

[Greiner 94]
Greiner, J. v
A comparison of data-parallel algorithms for connected components.
In Proceedings of ACM SIGPLAN Symposium on Parallel Algorithms and Architectures.
ACM, June, 1994,

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

[Greiner and Blelloch 95]
Greiner,J., and G.E. Blelloch.
Connected Components Algorithms.
In G.W. Sabot (editor), High Performance Computing: Problem Solving with Parallel and
Vector Architectures. Addison Wesley, Reading, MA, 1995.

[Greiner and Blelloch 96]
Greiner, J., and G.E. Blelloch.
A Provably Time-Efficient Parallel Implementation of Full Speculation.
. In Proceedings of the ACM Symposium on Principals of Programming Languages, pages
309-321. January, 1996.

[Gremban et al. 95]
Gremban, K.D., G L. Miller, and M. Zagha.
Performance Evaluation of a New ParaIlel Preconditioner.
In Proceedings of the 9th International Parallel Processing Symposzum IPPS, April. 1995.

[Gupta and Fisher 93]
Gupta, A. and A.L. Fisher.
Representation and symbolic manipulation of linearly inductive boolean functions.
In International Conference on Computer-Aided Design. November, 1993.

[Hardwick 94]
Hardwick, J.C. .
Porting a vector library: a comparison of MP[Paris, CMMD and PVM.
In Proceedings of Scalable Parallel Libraries Conference. SPLC, October, 1994.

[Hardwick 96]
Hardwick. J.C. .
An Efficient Implementation of Nested Data Parallelism for Irregular Divide-and-Conquer Al-
gorithms.
In First International Workshop on High-Level Programming Models and Supportive
Environments. April, 1996.

[Hardwick and Sipelstein 96]
Hardwick, J.C., and J. Sipelstein.
Java as an Intermediate Language.
Technical Report CMU-CS-96-161, Computer Science Department, Carnegie Mellon Univer-
sity,
August, 1996.

[Jain and Bryant 93]
Jain, A. and R.E. Bryant.
Inverter minimization in logic networks.
In International Conference on Computer-Aided Design. November, 1993.

[Jain et al. 96]
Jain, A., K.A. Nelson, and R.E. Bryant.
Verifying Nondeterministic Implementations of Deterministic Systems.
In Formal Methods in Computer-Aided Design. FMCAD, November, 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

. S-42 SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

[Leighton and Maggs 95]
Leighton, F.T. and B.M. Maggs.
Fast algorithms for finding O(congestion + dilation) packet routing schedules.
In Proceedings of the 28th Hawaii International Conference on System Sciences. HICSS,
January, 1995.

[Long et al. 94]
Long. D.E., A. Browne, E.M. Clarke, S. Jha. and W.R. Marrero.
An improved algorithm for the evaluation of fixpoint expressions.
In Proceedings of Conference on Computer-Aided Verification. CAV, June, 1994,

[Maggs et al. 94a]
Maggs. B.M., F.T. Leighton, and S.B. Rao.
Packet routing and job-shop scheduling in O(congestion + dilation) steps.
Combinatorical4(2):167-1 80, 1994.

[Maggs et al. 94b) .
Maggs. BM., F.T. Leighton, S.B. Rao, and A.G. Ranade.
Randomized routing and sorting on fixed-connection networks.
Journal of Algorithms17(1):157-205, 1994.

[Maggs et al. 95] _
Maggs, B.M., L.R. Matheson, and R.E. Tarjan.
Models of parallel computation: a survey and synthesis. _
In Proceedings of the 28th Hawaii International Conference on System Sciences. HICSS,
January, 1995.

[Pandey et al 96]
Pandey. M., R. Raimi, D.L. Beatty, and R.E. Bryant.
Formal Verification of PowerPC(TM) Arrays using Symbolic Trajectory.
In Proceedings of the 33rd Automated Design Conference. June, 1996.

[Reid-Miller 94]
Reid-Miller, M.
List-ranking and list-scan on the Cray C90.
In Proceedings of ACM SIGPLAN Symposium on Parallel Algorithms and Architectures.
ACM, June, 1994,
Also available as Technical Report CMU-CS-94-101, and to appear in Journal of Computer
and System Sciences.

[Seger and Bryant 95]
Seger, C.-J.H., and R.E. Bryant.
Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories.
Formal Methods in System Design6(2):147-190, 1995.

[Sheffler and Bryant 93]
Sheffler, T.J. and R.E. Bryant.
An analysis of hashing on parallel and vector computers.
In International Conference on Parallel Processing. August, 1993.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPECIFICATION, VERIFICATION. AND PROGRAM DEVELOPMENT 543

[Starkey and Bryant 95]
Starkey, M., and R.E. Bryant.
Using Ordered Binary-Decision Diagrams for Compressing Images and Image Sequence;.
Technical Report CMU-CS-95-105, Computer Science Department, Carnegie Mellon Univer-
sity,
January, 1995.

[Stricker and Hardwick 96]
Stricker, T.M.,, and J.C. Hardwick. ’
From AAPC Algorithms to High Performance Permutation Routing and Sorting.
In Proceedings of the 8th ACM Symposium on Parallel Algorithms and Architectures. June,
1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

5-44

FINAL REPORT 1993-1999

SPECIFICATION, VERIFICATION, AND PROGRAM DEVELOPMENT

SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTELLIGENT INFORMATION INTEGRATION 61

6. Intelligent Information Integration

The objective of this research has been to develop a network of software agents that provide
information access and fusion from heterogeneous information sources and to experiment with
these agents within a fielded system for supporting a collection of office work tasks. Our thesis
has been that methods for learning and negotiation will dramatically improve the effectiveness,
robustness, scalability, and maintainability of such systems.

Our accomplishments include development of a knowledge-based assistant for calendar manage-
ment that learns scheduling preferences of its users, and integration of this with two other agents
(a personnel agent and visitor hosting agent) to assist jointly in hosting visitors. We sub-
sequently began a new thrust to explore the role of machine learning for information access on
the worldwide network. More recently, a significant portion of our effort has been devoted to
development and initial deployment of a newsgroup reader that learns user reading interests so
that it can retrieve new articles of high relevance, and a tour guide agent for the world wide web
that learns to suggest which hyperlinks to follow.

6.1 System design
Our strategy has been to develop a collection of learning and negotiating mediators that are
hierarchically organized. Characteristics of the architecture are:

e Sharability — mediators are sharable by many user applications

e Flexibility — mediators can interact in new configurations "on-demand”, depending
on the information requirements of a particular decision making task

e Modularity - mediators are kept simple for ease of maintenance, and their results are
composable.
Mediators are of two types: :
o Information Assistant mediators, which oversee specific information sources and in-
terface them to other mediators

o Task Assistant mediators, each of which has a model of a specific task. Task Assis-
tants interface users to the collection of other mediators.

Mediators in the system leamn in several ways.
e They learn regularities implicit in the databases. These learned regularities are used
to:
* Infer missing data values
« Identify irregular data entries

« Explicitly communicate general, learned relationships to other software
agents and to users.

e They act as "learning apprentices" that observe user actions and unobtrusively and
incrementally learn models of the user’s preferences, user’s task and users’ work
processes, thus being able to adapt to the user’s mode of interaction, anticipate a
user’s information retrieval needs and respond quickly to unexpected events.

e They leamn effective information retrieval and negotiation strategies. In particular,
they learn how to resolve information conflicts, which information mediators are
capable of answering which specific queries, with what reliability, what cost, and
under what circumstances.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

62 INTELLIGENT INFORMATION INTEGRATION

The mediators in the system are distributed and negotiate in order to:
* Resolve conflicts in the retrieved information

* Achieve agreement on domain decisions, taking into consideration the preferences
of their users.
Negotiation is supported by learned knowledge (e.g. regularities in different data bases. user’s
task and user’s interaction model) and in return serve as sources of additional experience for
further learning.

6.2 Significance of task assistants

Our research has significantly improved the ability of computer users to access and fuse infor-
mation from heterogeneous sources, and has lowered the barrier to developing software systems
customized to specific users and application tasks. In particular:

¢ Self-customizing software agents based on machine learning methods will reduce by
an order of magnitude the user-specific effort required to convert generic application
software (e.g., schedulers) into useful systems for specific tasks and users.

* User transparent information access and integration in user-specific terms, irrespec-
tive of information source location and format, will significantly increase the
capability of planners. This is especially important in crisis action planning.

¢ Automated support for interleaving of planning and information retrieval for users
distributed in space and time will reduce by an order of magnitude cycle time for
concurrent planning or design.

Our approaches to learning and negotiation offer the possibility to significantly improve the
robustness and effectiveness of Intelligent Information Integration systems. For example a learn-
ing information filter or tour guide could be of significant use for monitoring the flood of
heterogeneous streams of information for intelligence surveillance.

6.3 Developing task assistants: the Pleiades system

We have developed a collection of mediator Task Assistants, collectively called the Pleiades
system. Prototype or mature versions have been demonstrated of CAP (our calendar apprentice,
which learns user scheduling preferences), an electronic news reader that learns user interests in
reading news from the net, a Visitorhost that helps schedule visitors for technical briefings, and a
Personnel Information mediator that provides information about specific individuals and their
jobs. Machine learning capabilities have been demonstrated in the Calendar Apprentice. Col-
laboration between the Visitorhost and Personnel mediator has been demonstrated in the context
of identifying relevant information for scheduling technical briefings at Carnegie Mellon.

We enhanced the Pleiades collection of interoperating agents with additional Information Assis-
tants and Task Assistants to support an extended visitor hosting scenario using additional
Internet-based information sources and services. The current Information and Task Assistants
that are used in the extended visitor hosting scenario are:

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTELLIGENT INFORMATION INTEGRATION 63

Information-Specific Agents
1. Finger agent, which heuristically parses the retrieved information from remotely
residing "finger" data bases. The possible types of information that can be ac-
quired in this way include: work title, research interests, work and home phone
numbers, vacation plan, etc.

2. Who's-Who agent, which accesses on-line Carnegie Mellon who’s who database
through http- based queries. The fields in the database include: name, title, affilia-
tion, campus office, campus phone number, home address and e-mail address.

3. Faculty Interests agent, which can be used to retrieve information about the faculty
members in the School of Computer Science at Carnegie Mellon with respect to
their research interests.

4. Computer-Science-Directory agent, which can get the information about phone
number, office number, home address, etc. for all the members of the School of
Computer Science at Carnegie Mellon, including faculty members, staff and stu-
dents.

" 5. Sean communication agent that routes messages to appropriate agents anfi.trans-
lates the messages into the recipient’s format to ensure agent interoperability.

Task-Specific Agents
L. Host-Visitor agent, which accepts input from the user regarding the visitor's iden-
tity, research interests, tentative meeting date and meeting durations. The Host-
Visitor interacts with other agents to arrange the visitor’s meetings and schedule at
Carnegie Mellon.

. CAP personalized calendar management apprentice, which provides an editing in-
terface to a calendar, and learns users’ scheduling preferences by generalizing from
specific observed events that appear on the calendar.

3. Scheduling agent, which takes the responsibility of maintaining a visitor’s meeting
schedule. The Scheduling agent coordinates with personalized meeting calendar
apprentices, such as CAP that users may possess, or exchanges e-mail with users
directly, to find out whether they agree to meet w1th the visitor and to resolve any
scheduling conflicts.

4. Personnel Finder agent, which coordinates all personnel information agents (e.g.,
Finger, Who’s Who, etc.), and resolves any conflicting information returned by
them. Personnel Finder also accesses resources on the Internet to find information
about people.

5. Interface agent, which presents to the user acquired information from task or infor-
mation specific agents.

6. Information Flow Visualization agent that monitors the information flow among

the rest of the agents in the visitor hosting scenario and dynamically visually dis-

plays the flow on a separate screen. This agent has been very useful in visualizing,

understanding and debugging the distributed agent interactions in Pleiades.
Our Personnel Information mediator provides mediated interoperation between the Visitorhost
task mediator and a number of data bases. It (1) allows posting of queries in domain-specific
terms, (2) frees the requester from having to know where the information is stored or how it is
organized, and (3) returns useful information, even when the databases are incomplete.

[

Our Visitorhost task mediator: (1) has a task model defining the terminology for posing queries,

SOFTWARE SCIENCES AND ENGINEERING RESEARCH ' FINAL REPORT 1993-1999

64 INTELLIGENT INFORMATION INTEGRATION

(2) interacts with the Personnel Information mediator to get information from a variety of infor-
mation sources, and (3) reformulates answers to queries as new queries, thus interleaving in-
ference and information retrieval.

We completed experiments with the learning Calendar Apprentice, based on five user-years of
fielded use by a handful of routine users. These experiments indicated that the system could
learn automatically thousands of user-specific rules that captured the scheduling preferences of
various individuals. Results of these experiments are reported in [Mitchell et al. 94].

6.4 Learning reading interests from experience

We produced an electronic newsreader (NewsWeeder) that learns users reading interests from
experience. It uses these interests to create an additional personalized newsgroup containing the
most relevant new articles from a broad range of newsgroups that the user otherwise does not
see. Results show that the learned user profile successfully increases the proportion of articles
the user finds interesting. These results, summarized in [Lang 95], were presented in July 1995
to the Machine Learning conference. A major development in this project was the development
of a new algorithm for learning to classify text. In contrast to the most common algorithm in the
information retrieval field, TFIDF, this new algorithm is based on a minimum description length
(MDL) approach. In this approach, the program first learns the probabilities of occurrence of
individual words, conditioned on the class from which the article is drawn. These probabilities
allow estimating the minimum coding length needed when compressing a new article from the
same class. A new article is then classified by assigning it to the class that best compresses it. In
NewsWeeder experiments this MDL approach significantly outperformed TFIDF.

6.5 An experience-assisted web agent

We developed an agent to assist users in locating information on the world wide web. The agent
(WebWatcher) assists users by accompanying them from page to page, highlighting useful links
and suggesting new pages to visit. Its advice is learned automatically from experience, by ob-
serving the response of previous users with similar interests. Over the past six months we have
further developed the system software and explored alternative approaches to learning advice-
giving strategies from experiments. At the end of this reporting period, WebWatcher was
developed fully enough to enable its first deployment on a large scale. We deployed it on the
front door Web page of Camegie Mellon’s School of Computer Science, where it served ap-
proximately 2000 users during its first few weeks, and many thousands of users since its incep-
tion.

We have received numerous inquiries asking for technical details of this system. See
http://www.cs.cmu.edu/~webwatcher for more information,

6.6 Warren: A portfolio management system

We developed a prototype system, Warren, comprised of a collection of distributed software
agents that aid users in portfolio investment management by accessing, filtering, and integrating
information from the World Wide Web. The overall portfolio management task has several
component tasks. These include eliciting (or learning) user profile information, collecting infor-

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTELLIGENT INFORMATION INTEGRATION 6-5

mation on the user’s initial portfolio position, and suggesting and monitoring a re-allocation to
meet the user’s current profile and goals. As time passes, assets in the portfolio will no longer
meet the user’s needs (and these needs may also be changing as well). Our initial system focuses
on this ongoing portfolio monitoring process. See http://www.cs.cmu.edu/~softagents,a
general page on our software agents, including the Warren.

6.7 Bazaar: A formal negotiation model

We undertook development of a formal negotiation model, called Bazaar, based on bargaining
theory for exploration of multiagent, multiissue, incremental negotiation strategies with limited
information. This model also constitutes a framework within which we are studying multiagent
learning issues. We have already obtained some initial theoretical results (proving that under
certain assumptions, learning is beneficial in a multiagent setting). We have also performed ex-
periments in a simulated negotiation setting. In our experiments, a nonlearning agent, makes
decisions based solely on’its own reservation price. A learning agent makes decisions based on
both its own and its opponent’s reservation price. Note that reservation prices are private infor-
mation and there is no way that an agent can know the exact value of its opponent’s reservation
price, even after an agreement has been reached. However, each learning agent can have some a
priori estimation of its opponent’s reservation price and update its estimation during the negotia-
tion process using a Bayesian belief updating mechanism. We measured the quality of a par-
ticular bargaining process using the normalized joint utility fashioned after the Nash solution.
Our results show that learning is beneficial for the learning agent(s) both in terms of contract
quality and computational efficiency.

6.8 A World Wide Knowledge Base

In the latter part of this reporting period, we initiated a World Wide Knowledge Base project.
This is a new effort to develop a software agent to construct a symbolic, probabilistic, knowledge
base automatically by exploring and mining the Worl Wide Web. The specific approach is to
extend our earlier machine learning approaches to provide an agent that can be trained to extract
knowledge to fit a user-provided ontology that defines the classes of objects and relations of
interest.

Preliminary experiments were promising. Given an ontology that defines knowledge base clas-
ses including PERSON, STUDENT, FACULTY, RESEARCH-PROJECT, UNIVERSITY-COURSE, and
DEPARTMENT, we trained the agent to recognize Web pages for each of these classes. After train-
ing on several thousand pages taken describing three universities, we gave it pages from a fourth
university. Of the 555 pages describing instances of STUDENT, it correctly extracted 504 of these
and added them to its knowledge base as new students. Similar results were obtained for other
classes in the ontology. Further details are available in [Craven et al 97].

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

6-6 INTELLIGENT INFORMATION INTEGRATION

6.9 Other initiatives

6.9.1 Active data management

We have developed information agents that perform sophisticated active data management func-
tions for numeric and textual data. An agent advertises its active data management capabilities to
a matchmaker agent, who can be queried about the availability of such services by requesting
agents (its customers). A customer registers with the agent(s) providing the services the cus-
tomer needs, receiving notification whenever the corresponding information source is updated.
Registration for information services may include reporting deadlines. For example, a monitor-
ing request to the Security APL ticker tracker agent may be "notify me, within 5 minutes of the
occurrence of the event, when the price of IBM increases by 10%."

6.9.2 Matchmaker agents

We have developed matchmaker agents, information agents that know about capabilities and ser-
vices that can be provided by other agents. The matchmaker is a type of yellow pages that can be
queried for particular services by other agents. When an agent is started, it first registers, or
advertises its capabilities, with the matchmaker.

6.9.3 Information services

We have developed a language to describe information services, and protocols for advertisement
of information services and registration with agents providing such services.

6.9.4 Self-monitoring

When an information agent detects that its performance in providing information services is
degrading (e.g., it detects missing reporting deadlines). it can now automatically clone itself and
divide its customer list among its clones to increase quality of service.

6.9.5 Reusable agent architecture

Our work has resulted in a generic and reusable agent architecture that facilitates rapid agent
construction. This architecture consists of:

® Planning component: The planning module takes as input a set of goals, and then
produces a plan that satisfies the goals. The planning module of the task agents can
be a full-fledged planner, whereas the planning module of the interface agents and
the information agents is much simpler— consisting of retrieval and instantiation of
plan templates.

* Scheduling module: This module schedules each of the plan steps. The agent
scheduling process in general takes as input the agent’s current set of plan instances
(in particular, the set of all executable actions) and decides which action, if any, is to
be executed next. This action is then identified as a fixed intention until it is actually
carried out (by the execution component). While task agents can require very
sophisticated scheduling, in our initial implementation of information agents we use
a simple, earliest-deadline-first schedule execution heuristic.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH °

INTELLIGENT INFORMATION INTEGRATION 67

e Execution Monitoring: The agent execution monitoring process takes as input the
agent’s next intended action and prepares, monitors, and completes its execution.
The execution monitor prepares an action for execution by setting up a context (in-
cluding the results of previous actions, etc.) for the action. It monitors the action by
optionally providing the associated computation limited resources —for example,
the action may be allowed only a certain amount of time and if the action does not
complete before that time is up, the computation is interrupted and the action is
marked as having failed.

e Communication and Coordination: This component prepares messages to be sent
out, interprets received messages. and reasons about to whom to send a request, and
when. The agents communicate through the KQML language.

e Plan library: This library contains skeletal plans and plan fragments that are in-
dexed by goals, and can be retrieved and instantiated according to the current input
parameters. The retrieved and instantiated plan fragments are used to form the
agent’s task tree that is incrementally executed.

e Belief and facts data base: These structures contain facts and other knowledge re-
lated to the agent’s functionality.

6.9.6 Interest and opportunity matching

We have developed an agent that learns user research interests and norltles users of conference
announcements that are available on newsgroups, and requests for proposals available from the
Electronic Commerce Business Daily. The agent’s learning is "bootstrapped” using research
papers and reports the user has written. Two technologies were examined and experimentally

compared: information filtering and neural networks.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

6-8 INTELLIGENT INFORMATION INTEGRATION

6.10 Bibliography

[Armstrong et al. 95]
Armstrong, R., D. Freitag, T. Joachims, and T. Mitchell.
WebWatcher: A Learning Apprentice for the World Wide Web.
In Spring Symposium on Information Gathering from Heterogeneous, Distributed
Environments. AAAI, March, 1995.

[Bocionek and Mitchell 93]
Bocionek, S. and T. Mitchell.
Office automation systems that are programmed by their users.
In Proceedings of the 23rd Annual Conference of the German Association of Computer
Science (Gesellschaft fur Informatik). Gl, September, 1993.

{Caruana and Freitag 94]
Caruana, R. and D. Freitag.
Greedy attribute selection.
In The Proceedings of the Eleventh International Conference on Machine Learning. CML,
1994.

[Craven et al 97)
Craven, M., D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and C.Y. Quek.
Learning to Extract Symbolic Knowledge from the World Wide Web.
In International Conference on Machine Learning. ICML’97, 1997.
Submitted.

[de Kroon et al. 96]
de Kroon, H.C.M., T.M. Mitchell, and E.J.H. Kerckhoffs.
Improving Leamning Accuracy in Information Filtering.
In Workshop on HCI and ML, in affiliation with the 1996 International Conference on
Machine Learning. 1ICML, July, 1996.

[Decker et al 97]
Decker, K., A. Pannu, K. Sycara, and M. Williamson.
Designing Behaviors for Information Agents.
In Proceedings of the First International Conference on Autonomous Agents. ICAA,
February, 1997.

[Decker et al. 96a]
Decker, K., K. Sycara, and M. Williamson.
Intelligent Adaptive Information Agents.
In Proceedings of the AAAI-96 Workshop on Intelligent Adaptive Agents. AAAIL, August,
1996.

[Decker et al. 96b]
Decker, K., K. Sycara, and D. Zeng.
Designing a Multi-Agent Portfolio Management System.
In Proceedings of the AAAI-96 Workshop on Internet-Based Information Systems. AAAL
August, 1996.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTELLIGENT INFORMATION INTEGRATION &9

{Joachims et al 97]
Joachims, T., D. Freitag, and T. Mitchell.
WebWatcher: A Tour Guide for the World Wide Web.
In Proceedings of the 1997 IJCAIL. 1JCAI, 1997.

[Joachims et al. 95]
Joachims, T., T. Mitchell, R. Armstrong, and D. Freitag.
WebWatcher: Machine Learning and Hypertext.
In German Workshop on Machine Learning. August, 1995.

[Lang 95]
Lang, K.
A newsreader that learns the interests of its users.

In Proceedings of the International Conference on Machine Learning 1995. ICML, July,
1995.

[Lewis and Sycara 93]
Lewis, M. and K. Sycara.
Informed decision making in multi-specialist cooperation.
Group Decision and Negotiation2(3), 1993.

[Liu and Sycara 94]
-Liu, J.S. and K. Sycara.
Distributed constraint-directed meeting schedulmg
In Workshop Notes of the CAIA-94 W()I kshop on Coordinated Design and Planning. CAIA,
March, 1994.

[Liu and Sycara 95]
Liu, J.S. and K. Sycara.
Exploiting Problem Structure for Distributed Constraint Optimization.
In First International Conference on Multi Agent Systems. ICMAS, June, 1995.

[Mitchell et al. 94]
Mitchell. T., R. Caruana, D. Freitag, J. McDermott, and D. Zabowski.
Experience with a learning personal assistant.
Communications of the ACM37(7):81-91, 1994,

[Miyashita and Sycara 94]
Miyashita. K. and K. Sycara.
A framework for case-based revision for schedule generation and reactive schedule manage-
ment.
The Journal of the Japanese Society of Artificial Intelligence9(3):426-435, 1994.

[Miyashita and Sycara 95a]
Miyashita. K. and K. Sycara. A
CABINS: a framework of knowledge acquisition and iterative revision for schedule optimiza-
tion and reactive repair.
Al Journal, 1995.
To appear.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

6-10 INTELLIGENT INFORMATION INTEGRATION

[Miyashita and Sycara 95b]
Miyashita. K. and K. Sycara. .
Improving System Performance in Case-Based Iterative Optimization through Knowledge Fil-
tering.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence.
[JCAI-95, August, 1995.

[Pannu and Sycara 96]
Pannu, A., and K. Sycara.
A Personal Text Filtering Agent.
In Working Notes of the AAAI Spring Symposium Machine Learning for Information Access.
AAAL 1996.

[Sycara 93]
Sycara, K.
Machine learning for intelligent support of conflict resolution.
Decision Support Svstems10:121-136, 1993.

[Sycara and Liu 94]
Sycara, K. and J.S. Liu.
Distributed meeting scheduling.
In Proceedings of the Sixteenth Annual Confererice of the Cognitive Science Society. CSS,
August, 1994, ' ’

[Sycara and Miyashita 94]
Sycara, K. and K. Miyashita.
Case-based acquisition of user preferences for solution improvement in ill-structured domains.
In Proceedings of the Twelfth National Conference on Artificial Intelligence. AAAL July,
1994.

[Sycara and Miyashita 95]
Sycara, K. and K. Miyashita.
Learning Control Knowledge through Case-Based Acquisition of User Optimization Preferen-
ces. :
In Y. Kodratoff and G. Tecuci (editor), Knowledge Acquisition and Machine Learning: An
Integrated Approach. Morgan Kaufmann Publishers, 1995.

[Sycara and Zeng 94]
Sycara, K. and D. Zeng.
Towards an intelligent electronic secretary.
In Proceedings of the International Conference on Information and Knowledge Management
Workshop on Intelligent Information Agents. CIKM-94, December, 1994.

[Sycara and Zeng 95]
Sycara, K. and D. Zeng.
Task-based multiagent coordination for information gathering.
In C. Knoblock and A. Levy (editor), Working Notes of the AAAI Spring Symposium Series on
Information Gathering from Distributed, Heterogeneous Environments. AAAI 1995.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

INTELLIGENT INFORMATION INTEGRATION 6-11

[Sycara and Zeng 96a]
Sycara, K., and D. Zeng.
Coordination of Multiple Intelligent Software Agents.
International Journal of Cooperative Information Systems, 1996.
To appear.

[Sycara and Zeng 96b]
Sycara, K., and D. Zeng.
Multi-Agent Integration of Information Gathering and Decision Support.
In Proceedings of the 12th European Conference on AI. ECAI, August, 1996.

[Sycara and Zeng 96¢]
Sycara, K., and D. Zeng.
Coordmatlon of Multxple Intelligent Software Aoents
International Journal of Intelligent and Cooperative Information Systems, 1996.

[Sycara and Zeng 96d]
Sycara, K. and D. Zeng.
Coordination of Multiple Intelligent Software Agents.
International Journal of Intelligent and Cooperative Information Systems5(2-3):181-211,
1996.

[Sycara et al 96] ’
Sycara, K., K. Decker, A. Pannu, M. Williamson, and D. Zeng.
Distributed Intelligent Agents.
{EEE Expert: Intelligenr Svstems and their Applications11(6), 1996.

[Sycara et al. 95}
Sycara, K., D. Zeng, and K. Miyashita.
Using case-based reasoning to acquire user scheduling preferences that change over time.
In Proceedings of the Eleventh Internationul Conference on Artificial Intelligence Applica-
tions (CAIA '95). IEEE, February, 1995.

[Williamson et al. 96]
Williamson, M., K. Decker, and K. Sycara.
Unified Information and Control Flow.
In Proceedings of the AAAI-96 Workshop on Theories of Action, Planning and Control:
Bridging the Gap. AAAI, August, 1996.

[Zeng and Sycara 94]
Zeng, D. and K. Sycara.
Preliminary report on generic negotiator.
In Proceedings of the International Conference on Information and Knowledge Management
Workshop on Intelligent Information Agents. CIKM-94, December, 1994.

[Zeng and Sycara 96]
Zeng, D., and K. Sycara.
Bayesian Learning in Negotiation.
In Proceedings of the AAAI Stanford Spring Symposium on Adaptation, Co-evolution and
Learning in Multi-Agent Systems. AAAI March, 1996.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

6-12 INTELLIGENT INFORMATION INTEGRATION

[Zeng and Sycara 97]
Zeng. D. and K. Sycara.
Baysean Learning in Negotiation.
International Journal of Human Machine Systems, 1997.
To appear.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SPOKEN-LANGUAGE SYSTEMS 7-1

7. Spoken-language systems

The long-term goal of Carnegie Mellon’s speech recognition effort continues to be the enhance-
ment of the accuracy, robustness, portability, scalability and utility of spoken language systems,
through the development of strategies to automatically acquire knowledge at all levels of the
process and through unification of structures to represent this knowledge. The goal of the effort
reported here has been to create technology for real-time unlimited vocabulary spoken language
processing in the context of practical applications.

7.1 Practical applications of speech recognition research

Carnegie Mellon pursues a broad program of research in the context of speech applications that
offer practical value to the Department of Defense. Three systems developed under the current
contract draw upon this work. Each application emphasizes a currently difficult of aspect of
speech technology: .
* A speech interface for a wearable computer provides access to information resources
for the mobile warfighter.

e The News-on-Demand system uses speech recognition for automatic indexing of
broadcast materials and for subsequent retrieval.

e DIPLOMAT provides a flexible, multimodal,-speech-to-spesch translation system.

The wearable speech-system work focuses on developing speech-only interfaces to small,
wearable devices for which conventional interface modalities are inappropriate. Such systems
require the development of strategies for interacting fluently with the user, providing for orien-
tation and error correction. We first addressed this problem in the context of an amphibious as-
sault vehicle inspection task for the Marines, where speech is the means of recording inspection
data and of accessing maintenance resources. Our current work broadens this focus to the
DIPLOMAT system and information access, where speech is used potentially in conjunction with
other input modalities in a reconfigurable multimedia interface.

The News-on-Demand work concentrates on the problem of decoding ‘‘found speech,”” that is,

speech not originally produced with the intent of being automatically decoded. This domain re-

quires the capability to automatically segment a broadcast stream and to automatically adapt the
language model to content. It emphasizes basic recognition techniques and adaptation to evolv-

ing situations. The testbed for News-on-Demand is the indexing of broadcast news, with a goal
for increasing accuracy of transcription and the sophistication of queries that are possible on the
resulting database.

The DIPLOMAT work, reported separately in Section 12, addresses two issues: cross-language
communication among a diverse range of individuals and procedures for rapidly deploying
speech and translation capabilities. This domain emphasizes speech interfaces that are simple to
use and that can be learned easily. It also emphasizes procedures for rapidly acquiring and
processing language-specific information (needed for acoustic, lexical, and language modeling
of speech and for creating translation knowledge-bases, both transfer-based and example-based).
The testbed for DIPLOMAT is rapid development of speech-to-speech translation capabilities for a
series of nonEnglish languages.

The application-specific work described above draws on a core of spoken-language research
carried out by Carnegie Mellon. The goal of this more fundamental work is to:

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

-2 . SPOKEN-LANGUAGE SYSTEMS

® Improve speech recognition through fundamental advances in technology, including
automatic acquisition of phonetic, lexical, syntactic, and semantic knowledge.

* Develop dynamic, domain-language adaptation

* Develop algorithms to detect and assimilate new words and to extend grammatical
coverage for them

* Develop algorithms for environmental robustness to maintain good recognition per-
formance under varied conditions.

7.2 Accomplishments

Carnegie Mellon’s Speech Group has substantially advanced the state of the art in speech recog-
nition, spoken-language understanding, and dialog modeling. Several concept-demonstration
systems embody these advances, and our work is available (in software form) to the community.

 We extended the DIPLOMAT cross-lingual speech communications system to work
with two additional languages of interest to DoD, Haitian Creole and Korean.
Generalized and improved rapid deployment techniques.

® We extended our mobile/wearable speech systems work to a new domain, indexing
(e.g., license-plate lookup) system developed in cooperation with the City of Pitts-
burgh Police. Extensions included a more sophisticated dialog-level model for inter-
action and integral use of speech response. °)

¢ Delivered and installed a version of the News on Demand system in the DARPA TIE
facility. Significantly improved retrieval accuracy for News on Demand, by tailor-
ing retrieval to the characteristics of the domain (errorful transcribed speech). Ac-
curate retrieval is possible even with significant degradation in transcription ac-
curacy. :

* We developed techniques for adaptive language-modeling based on small amounts
of data and were among the first sites to pursue active research in this area.

* We developed techniques for dynamically modifying running decoders, including
changes to lexicon and language model.

* We developed techniques for integrating speech-recognition and understanding and
demonstrated significant error reduction (20%) based on these techniques.

 Camnegie Mellon conceived and developed a broadcast-news component (News-on-
Demand) for the Informedia system with an emphasis on rapid access to broadcast
materials. '

e Applying speech technology to support retrieval of spoken-language information,
we developed techniques for annotating recognizer output with probabilities of cor-
rect recognition and using this information to improve retrieval performance.

e Continued development of our wearable system. which incorporates advanced
recognition technology, led to new paradigms for speech-only interaction, and we
ported the system to a new domain (law enforcement).

* We developed procedures that use speech understanding to aid in completing online,
electronic forms and investigated the structure of generalized interfaces to Web
material. Our demonstration system embodied techniques that interpret HTML code
to aid recognition and enhance Web-based forms to facilitate spoken-language inter-
action.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

o

SPOKEN-LANGUAGE SYSTEMS 73

e We further refined our techniques for speech-based Web-browsing, an approach that
utilizes plug-in, Java. and server models. We also developed several Web-based ser-
vices to support speech-system development, using them internally and making
them openly available on the Web.

7.3 Technology transition

Camnegie Mellon provides a suite of speech-recognition tools for use by technologically sophis-
ticated research and development organizations as a point of departure for research and produc-
tization efforts. We have migrated our software from a research environment to successively
“more accessible development environments, currently including Windows and Visual Basic. The
suite currently includes tools for acoustic modeling, language modeling, a decoder, a spoken-
language parser and example applications. We also provide (in the public domain) a 100,000+
word pronouncing dlctlonary used for lexical modeling and implementations of speech coding
algorithms.

The Speech Library has been used (and productized) by Apple, DEC, IBM, Kurzweil Al
Microsoft, Verbex, VPC. and Sun. Impact is measured by the availability of products from com- -
puter manufacturers (such as IBM and Apple) based on Carnegie Mellon technology. At the

same time, we provide our software to universities, federal contractors (in the past year.

Lockheed Martin and SAIC) and government labs for research into speech interfaces and for the
development of proiotype systems. In the past year we have provided systems to NIST, NRL., and
the U.S. Army Corps of Engineers.

A significant portion of our effort has been devoted to developing resources that serve the com-
munity at large:
e With Cambridge University, we produced a second version of our Spoken Language

Modeling Toolkit. the first such freely available resource for language modelmo and
one that sees wide use throughout the community.

e The Sphinx-II Recognition Toolkit provides a full range of tools for modeling and
developing speech-systems. It has been made available to both research and in-
dustrial users.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

[SPOKEN-LANGUAGE SYSTEMS

7.4 Bibliography

[Hauptmann et al. 98]
Hauptmann, A.G., R.E. Jones, K. Seymore, M.A. Siegler, S.T. Slattery, and M.J. Witbrock.
Experiments in Information Retrieval from Spoken Documents.
In Proceedings of the Broadcast News Transcription and Understanding Workshop
(BNTUW-98). DARPA, February, 1998.
Lansdowne. VA.

This paper describes the experiments performed as part of the TREC-97 Spoken Docu-
ment Retrieval Track. The task was to pick the correct document from 35 hours of recog-
nized speech documents, based on a text query describing exactly one document. Among
the experiments we described here are: Vocabulary size experiments to assess the effect of
words missing from the speech recognition vocabulary; experiments with speech recog-
nition using a stemmed language model: using confidence annotations that estimate of the
correctness of each recognized word; using multiple hypotheses from the recognizer. And
finally we also measured the effects of corpus size on the SDR task. Despite fairly high
word error rates, information retrieval performance was only slightly degraded for speech
recognizer transcribed documents.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

SHARING VIEWPOINTS, OBJECTS, AND ANIMATIONS 81

8. Sharing Viewpoints, Objects, and Animations
Our objectives for this effort were to:
e Determine cost effective delivery mechanisms of graphics for visual and collabora-
tive techniques

e Develop a predictive model for when a head mounted display (HMD), CAVE, la.rge
screen display, or traditional desktop displays is the delivery mechanism of choice

e Develop a novel set of interaction techniques for manipulating 3D objects, view-
points, and animations.

8.1 Developing predictive models based on representative tasks

The current state of the art for creating end user applications is to build for a specific delivery
mechanism. This is expensive and high risk. Our approach, based on a fundamental understand-
ing of the human perceptual system, is to determine generic, representative tasks (such as object
search, object selection, viewpoint manipulation, locomotion) and develop a predictive model.
This predictive model allowed us to determine for a given end user application whether or not
that application has attributes that merit the expense and difficulty of using a more exotic display
mechanism. Developing this model involved a number of user studies comparing the effective-
ness of HMDs, CAVEs, large screen displays, and traditional desktop displays for these repre-
sentative tasks.

The development of interaction techniques is essentially a creative process. Our approach was to
assemble a multidisciplinary team (including art majors, architecture majors, film studies majors,
computer scientists, and design majors) and present them with interaction challenges such as:
How would you build a virtual sand table once released from the constraints of the real world

(such as gravity)?

8.2 Creating interactive programs

The Alice software system allows users to create interactive programs using 3D graphics. run-
ning on top of Windows platforms. Alice uses Direct 3D as its retained mode drawing package,
and the Python programming language (www.python.org) as its scripting layer. The Alice Beta
release included full support for implicit animation threads, the ability to import files in the .dxf
and .obj format, and a revamped user interface.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

SHARING VIEWPOINTS, OBJECTS. AND ANIMATIONS

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

FOREIGN-LANGUAGE LEARNING o1

9. Foreign-language Learning

This research is applying automated speech recognition to the acquisition and sustainment of
foreign language speaking skills, which are increasingly important in an era of military and
civilian multinational endeavors. Language skills are among the most expensive taught in the
military, and atrophy quickly when not used.

Effective improvement of speaking skills requires a tutor to listen patiently to the student for
extended periods of time and provide individualized feedback. Human tutors are costly and may
be unavailable at the time or place where they are needed, such as military bases where soldiers
need to keep up their skills in languages not spoken there. Previous language learning software
either has not listened to the student, or has been limited in the feedback it provided, typically
rejecting spoken utterances without being able to explain what was wrong with them. Our work
seeks to overcome these limitations.

Key R & D issues includé:
e How to elicit predictable speech
e How to model and detect disfluency. mispronunciation, and inappropriate prosody
e How to respond to oral language errors in a pedagogically effective manner
e How to make the user interface easy and engaging to use |
e How to enable teachers to conveniently author materials for particular students

9.1 Approach

Our approach leverages from. and extends, Project LISTEN’s past and present work on an
automated reading coach that listens to children read aloud, and helps them when needed. This
approach focuses on methods we can implement in the coach now so as to study their effec-
tiveness in the context of real-time interactions with students. We adapt the reading coach into a
pronunciation tutor for Spanish, as follows:

e To elicit predictable speech. we display text for the student to read aloud. This text
represents an authentic task for Special Operations Forces — practicing the oral
presentation of a speech that must be given fluently, intelligibly, and credibly, such
as a **‘Mod-Demo’’ briefing in which SOF personnel introduce themselves to
foreign diplomats. Value added includes the ability to tailor learning materials to
actual mission-specific needs.

e To detect specific mispronunciations, we add them to the pronunciation dictionary
used by the speech recognizer. These entries are generated automatically by
phonological rules that represent transformations from native to accented speech.
These rules were developed by Computational Linguistics graduate student Jeffrey
Hill for his Master’s Project at Carnegie Mellon. The choice of which types of
mispronunciations to check for is based on advice from Spanish instructors about
which types of errors their students commonly make, for example, *‘gringo-ized™
versions of various Spanish vowels. Value added includes the ability to localize
speaking errors to individual phonemes.

e To respond to phoneme-level mispronunciations, we present spoken feedback on the
nature of the mistake (e.g., mispronouncing a vowel as a diphthong) and how to
correct it (pronounce the pure vowel sound). Value added includes the ability to
diagnose and remediate mistakes of particular types.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

9-2 FOREIGN-LANGUAGE LEARNING

* To make the interface usable and effective, we put the learner in control of such
choices as what to speak next, who (student or coach) is to speak it, and when to
accept detailed tutorial feedback. We streamline the interaction to support the most
frequent scenarios of usage. Value added includes the ability to tailor the interaction
to student needs.

In parallel with our work on methods we can study *‘on-line”” in the context of the current coach,
we are performing “‘off-line’” experiments to develop and evaluate new methods for analyzing
speech prosody as well as pronunciation. This second approach provides the theoretical proof
that the Sphinx II recognition system can be used to detect when a foreign speaker does not
attain the intended articulatory target. A database of native and nonnative (ten different L1s)
utterances of English is used. The nonnative speaker’s utterance is compared to the natives’

~ utterances.

9.2 Accomplishments

The funded work was presented in a video to the CAETI Community Conference, November,
1996. '

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

FOREIGN-LANGUAGE LEARNING 93

9.3 Bibliography

[Eskenazi 96]
Eskenazi, M.
Detection of foreign speakers’ pronunciation errors for second language training - preliminary
results.
In Proceedings of the Fourth International Conference on Spoken Language Processing. Oc-
tober, 1996.
Philadelphia, PA.

[Mostow 96]
Mostow, J.
A Reading Tutor that Listens.
Video presented at the DARPA CAETI Community Conference, Berkeley, CA, Nov 1996.
Length: Five minutes.

[Mostow, Hauptmann, and Roth 95]

Mostow, J., A. Hauptmann, and S. Roth.

Demonstration of a Reading Coach that Listens.

In Proceedings of the Eighth Annual Symposium on User Interface Software and Technology
(UIST 95), pages 77-78. ACM SIGGRAPH and SIGCHI in cooperation with SIGSOFT. Novem-
ber, 1995. :

Pittsburgh, PA. .

Project LISTEN stands for ‘‘Literacy Innovation that Speech Technology ENables.”’
We will demonstrate a prototype automated reading coach that displays text on a screen,
listens to a child read it aloud, and helps where needed. We have tested successive
prototypes of the coach on several dozen second graders. [Mostow et al AAAI94] reports
implementation details and evaluation results. Here we summarize its functionality, the is-
sues it raises in human-computer interaction, and how it addresses them. We are redesign-
ing the coach based on our experience, and will demonstrate its successor at UIST *95.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

9-4

FINAL REPORT 1993-1999

FOREIGN-LANGUAGE LEARNING

SOFTWARE SCIENCES AND ENGINEERING RESEARCH

10-1

INTERACTIVE COMMUNICATION TECHNOLOGY

10. Interactive Communication Technology

Our goal has been to create task-oriented technologies for collaboration among individuals,
workgroups, and information services. Such collaborations will be mediated by computers to
enhance access to relevant information or to overcome barriers of time, space, or culture. The
key to such collaborations is communication in the context of information relevant to the task at
hand. This means that collaboration must occur in the context of information tailored to the task
at hand. Collaboration must also be able to cross language barriers, and all interactive software
must support collaboration with relevant parties. Collaboration must not be confined to special-
ized software ghettos and must make effective use of all human communication modalities that
can be applied to the task at hand (e.g., speech, gesture, handwriting, face-, eye-, pose-, body-
motion). Finally. collaboration technologies must adapt to the tasks and the people involved,
rather than the other way around.

The ICIE project has built on the premise that interactive information should be available
anywhere, anytime, and to anyone who has authorization. The goal of our research was to ex-
tend the reach of desktop-interactive information into multiuser interaction and remote access.

10.1 Facilitators for collaboration

Pervasive collaboration

For successful computer-based collaboration it must be possible to communicate computer-based
information to anyone at any time. This objective implies that collaboration cannot be confined

to specialized applications: it must be broadly available in all applications. Our approach is to
integrate collaboration deeply into the interactive software architecture. By defining an inter-
active surface between the application and its input/output devices, we can capture and distribute *
collaborative information in an application-independent manner. By managing and tracking
change at the surface. we can make all participants aware of the work of their collaborators.

Multimodal web agents

The Camnegie Mellon Interactive Systems Lab has developed a new set of multimodal Web
agents that provide more effective means to access, manipulate, generate, and disseminate mul-
timedia information. By interpreting multimodal input, including speech. gesture, handwriting,
and eye- and face- tracking this approach will achieve more rapid, natural, and effective inter-
action with multimedia material.

In Multimedia documents included video, speech, text, are accessed by spoken, gestured, and
handwritten comments and commands. Suitable clips or segments of images, comments, and
sounds, are then selected and manipulated by spontaneously spoken, gestured, or handwritten
remarks to create new and value-added multimedia reports. Voice, drawings, gestures and hand-
written notes can also be attached to the emerging document as multimodal annotations. A
resulting multimodal Web document can then be shared with and disseminated to others,
anywhere on the Web or on an Intranet, for further discussion, modification, and/or reporting.
The multimedia documents (including the multimedia clips, the spoken and handwritten notes
and annotations) are content searchable by speech, gesture, and character recognition technol-

ogy.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

10-2 INTERACTIVE COMMUNICATION TECHNOLOGY

10.2 Accomplishments

® We developed an information delta algebra for tracking changes in interactive be-
havior. This forms a foundation for collaborative interaction.

® We developed an architecture for multiagent participation in interactions. This
design includes tools and techniques for drawing users’ attention to information lo-
cated by collaborators or automated agents working on the user’s behalf.

® We developed a robust architecture for asynchronous collaboration. The information
from any graphical application can be extracted and shared across the internet, with-
out requiring collaborations to have identical software for all collaborative applica-
tions. Generalized tools were developed for coordinating changes generated by mul-
tiple collaborators on any given work product.

® We developed a generalized architecture for integrating observational agents with
any application. Such agents intelligently analyze the graphical output of an ap-
plication to perform their respective tasks. The agents are tools developed indepen-
dently from any given application and then attached to the application to provide
assistance.

* We developed tools to retarget graphical applications for speech-based information
access. Spoken language access to graphical user interfaces provides remote access
to desktop applications in contexts where screen, keyboard, or internet connection is
not available. Semantic relationships are extracted from the graphical application
and used as the basis for generating a spoken interpretation and supporting spoken-
language navigation. -

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

-

INTERACTIVE COMMUNICATION TECHNOLOGY 10-3

10.3 Bibliography

[Pausch, Proffitt, and Williams 97}
Randy Pausch, Dennis Proffitt, George Williams.
Quantifying Immersion in Virtual Reality.
In Proceedings of SIGGRAPH 97. ACM, July, 1997.
http://www.cs.cmu.edu/~stage3/
publications/97/conferences/s iggraph/immersion/.

Virtual Reality (VR) has generated much excitement but little formal proof that it is
useful. Because VR interfaces are difficult and expensive to build, the computer graphics
community needs to be able to predict which applications will benefit from VR. In this
paper, we show that users with a VR interface complete a search task faster than users with
a stationary monitor and a hand-based input device. We placed users in the center of the
virtual room shown in Figure 1 and told them to look for camouflaged targets. VR users did
not do significantly better than desktop users. How ever, when asked to search the room and
conclude if a target existed. VR users were substantially better at determining when they
had searched the entire room. Desktop users took 41% more time, re-examining areas they
had already searched. We also found a positive transfer of training from VR to stationary
displays and a negative transfer of training from stationary displays to VR.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

104 INTERACTIVE COMMUNICATION TECHNOLOGY

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MULTIMODAL INTERACTION TECHNOLOGY -1

11. Multimodal Interaction Technology

11.1 Multimodal error-repair

This research investigated cross-modal repair of errors in automatically recognized speech. Our
work addressed methods that allow the user to switch modalities for corrections, e.g. from
speech to handwriting, (oral) spelling, or gestures drawn on a touch-sensitive screen. We im-
plemented cross-modal repair for dictation and form-filling applications and integrated these
methods with the multimodal interaction mechanisms in our previously developed QuickTurn
system.

User studies confirmed our hypothesis that cross-modal repair significantly expedites correcting
speech-recognition errors. compared to respeaking and choosing from alternatives. We showed
that cross-modal repair enables efficient repair without keyboard input.

These studies allowed us to evaluate repair extensively in the context of dictation applications.
Keyboard input is efficient for text input and proficient users. However, productivity can be in-
creased even for proficient users by using an automatic dictation system when the speech recog-
nizer is highly accurate (>95%) and repair is efficient. In dictation applications efficient repair is
possible both with cross-modal repair and using keyboard input.

We also invéstigated factors that drive user preference when they are given a choice among dif-
ferent repair modalities. Our studies clearly indicated that, while users tend to prefer speech
initially, they learn to select the most efficient modality and to avoid those that prove less so.

11.2 A multimodal toolkit

We have developed a common infrastructure and design methodology for constructing mul-
timodal user-interfaces. These ideas are embodied in an application framework and design
toolkit.

Architecture for a multimodal-application framework
In the Multimodal Application Framework (MMApp) we have implemented a system architec-
ture and a collection of software components that constitute it.

MMApp is modular, distributed, and customizable. The framework comprises reusable com-
ponents or modules that export services via well-defined interfaces and hide implementation
details. The framework’s major components can run as separate processes distributed across
multiple machines. MMApp provides reasonable defaults that are immediately useful in mul-
timodal application development, but application developers always have the option of overrid-
ing the defaults and supplying alternative implementations to suit the needs of a particular ap-
plication.

MMApp contains interfaces and implementations of speech/pen recording and recognition com-
ponents, communication components used in distributed interprocess communication, and
graphical user-interface components, including a default user interface in the form of a Java ap-
plet that can be deployed over the Web.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

1-2 MULTIMODAL INTERACTION TECHNOLOGY

Multimodal design and rapid prototyping

The software components in MMApp can be instantiated and interconnected to create a mul-
timodal application instance. To complete constructing the application, a multimodal interpreter
must be instantiated for the target domain so that the application can determine the correct action
to perform in response to an input event. We have developed a design process that can be fol-
lowed to create a working multimodal application within the MMApp framework and the Mul-
timodal Toolkit (MMTk), a collection of tools that automate many steps in the proposed design
process.

MMTK contains a Visual Grammar Designer that allows constructing MMGL input models and
modifying them using a drag-and-drop visual-construction paradigm. Other MMTK tools include
a Random Sample Generator, an N-gram Language Model Generator, an Input Preprocessor
Generator, an Integration Network Generator, and a Postprocessor Generator.

11.3 A multimodal workstation

We developed QuickTarget, a multimodal Web-based workstation for image analysts. By recog-
nizing a combination of spontaneously-spoken utterances, gestures, and pointing, QuickTarget
can process both images and video, allowing an analyst to describe and classify possible targets
rapidly. QuickTarget also attaches speech, gesture, and handwritten annotations, recognizes
spoken dictation for textual remarks, and, finally, generates multimedia Web-reports. We
demonstrated QuickTarget over the Web, using a Web-based, multimodal server.

11.4 Communicator: A telephone-based dialog System

The Carnegie Mellon Communicator system is a telephone-based dialog system that supports
travel planning, allowing users to create a travel itinerary based on actual availability. The Com-
municator system has served as a test bed for research in dialog management, natural language
generation and speech recognition for real-time applications.

Based on our experiences with an earlier dialog management system, Script, we implemented a
second dialog manager, Amoeba. Script supported linear dialogs, based on a form chain (that is,
the task was broken down into a sequence of topics, each topic being handled by a single form,
but the sequence of forms being pre-determined. Interaction followed this "script”, though users
were provided with navigational commands that allowed them to traverse the form chain).
Amoeba generalized the Script model, adding facilities for defining abstract data structures and
adding more powerful programming constructs. For recognition, we created a new set of acous-
tic models, incorporating actual Communicator data collected to that time using our system (a
total of 2.5h). We created models from telephonized ATIS data (i.e., 25h of wideband (16kHz)
speech, filtered to telephone bandwidth (8kHz).

We increased the capacity of our system to handle 186 different U.S. destinations. In addition,
we obtained a toll-free number for our system and began to publicize it externally (with the goal
of generating use by non-developers).

We trained a new set of acoustic models for Communicator, based on 72 hours of Broadcast
news, 10 hours of ATIS, and adapted using 7.1 hours of CMU Communicator speech. These
models produced a word error rate of 27.4%. We incorporated a language-model backoff pattern

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MULTIMODAL INTERACTION TECHNOLOGY 11-3

based confidence rating for decodings, keyed to individual words. We introduced a class-based
language model for the Communicator, incorporating 19 classes.

We later began implementation of a new dialog manager, Agenda, which used a different ap-
proach from the scripting languages we had developed for Script and Amoeba. Agenda
eliminates the form chain and replaces it with an ordered topic list derived from the itinerary data
structure (itself now a dynamic data structure constructed over the course of an interaction). We
completed a preliminary implementation.

We studied the feasibility of using a stochastic process for governing anaphora and like
phenomena in generation and compared it to a heuristic approach. The stochastic system used a
training corpus derived from transcriptions of a professional travel agent interacting with clients
and modeled the likelihood of a given concept appearing in an utterance, given its occurrence in
the immediately preceding turn. We found that while this technique produced acceptable output,
a simple heuristic based on whether information was new or old (and whether it had been im-
plicitly confirmed to the user) was sufficient.

CMU participated in the Communicator kick-off meeting in San Diego (13 January 1999), at
which we gave a live demonstration of the Communicator.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

1-4 MULTIMODAL INTERACTION TECHNOLOGY

11.5 Bibliography

[Bett et al. 00]
Bett, M., R. Gross, H. Yu, X. Zhu, Y. Pan, J. Yang, and A. Waibel.
Multimodal Meeting Tracker.

In Proceedings of RIAO2000. April, 2000.
Paris, France. To appear.

Face-to-face meetings usually encompass several modalities including speech, gesture,
handwriting, and person identification. Recognition and integration of each of these
modalities is important to create an accurate record of a meeting. However, each of these
modalities presents recognition difficulties. Speech recognition must be speaker and domain
independent, have low word error rates, and be close to real time to be useful. Gesture and
handwriting recognition must be writer independent and support a wide variety of writing
styles. Person identification has difficulty with segmentation in a crowded room. Further-
more, in order to produce the record automatically, we have to solve the assignment
problem (who is saying what), which involves people identification and speech recognition.
We follow a multimodal approach for people identification to increase the robustness (with
the modules: color appearance id, face id and speaker id). This paper will examine a meet-
ing room system under development at Carnegie Mellon University that enables us to track,
capture and integrate the important aspects of a meeting from people identification to meet-
ing transcription. Once a multimedia meeting record is created, it can be archived for later
retrieval. This paper will review our meeting browser that we have developed which
facilitates tracking and reviewing meetings.

(Jing et al. 97]
Jing, X., J. Yang, M.T. Vo, and A.H. Waibel.
Java front-end for Web-based multimodal human-computer interaction.
In Proceedings of the Workshop on Perceptual User Interfuces (PUI97). November, 1997.
Banff, Alberta, Canada.

As the Java programming environment offers immediate capabilities for creating cross
platform interactive applications. a Web-based, universal, multimodal interface becomes
possible. In this paper we present a Java front-end for multimodal human/computer inter-
action. We address the problems in both system design and implementation. We
demonstrate the feasibility of the proposed approach by a Web-based directory-assistant
system and a multimodal interface for medical applications.

[Stiefelhagen and Yang 97]
Suefelhagen, R. and J. Yang.
Gaze tracking for multimodal human-computer interaction.
In Proceedings of ICASSP 97. April, 1997.
Munich.

This paper discuss the problem of gaze tacking and its applications to multimodal
human-computer interaction. The function of a gaze tracking system can be either passive
or active. For example, a system can identify user's message target by monitoring the user’s
gaze, or launch an action by user’s gaze. We have developed a real-time gaze tracking sys-
tem that estimates the 3-D position and rotation (pose) of a user’s head. We demonstrate
the applications of the gaze tracker to human -computer interaction by two examples. The
first example shows that gaze tracker can help speech recognition systems by switching
language model and grammar based on user’s gaze information. The second example il-
lustrates the combination of the gaze tracker and a speech recognizer to view a panoramic
1mage.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MULTIMODAL INTERACTION TECHNOLOGY

[Stiefelhagen, Yang, and Waibel 97]
Stiefelhagen. R., J. Yang, and A .H. Waibel.
A model-based gaze-tracking system.
Int. Journal of Ariificial Intelligence Tools6(2):193-209, 1997.

In this paper we present a nonintrusive, model-based, gaze-tracking system. The sys-
tem estimates the 3-D pose of a user’s head by tracking as few as six facial feature points.
The system locates a human face using a statistical color model and then finds and tracks
the facial features, such as eyes, nostrils and lip corners. A full perspective model is
employed to map these feature points onto the 3-D pose. Several techniques have been

- developed to track the features points and recover from failure. We currently achieve a
frame rate of 15+ frames per second using an HP 9000 workstation with a framegrabber and
a Canon VC-CI1 camera. The application of the system has been demonstrated by a gaze-
driven, panoramic image-viewer. Potential applications of the system include multimodal
interfaces, virtual reality, and video-teleconferencing. '

Keywords: Gaze tracking, head orientation, human-computer interaction, multimodal
interfaces, facial feature extraction

[Suhm 97]

Suhm. B. :

Empirical evaluation of interactive multimodal error recovery.

In Proceedings of the IEEE Workshop on Speech Recognition and Understanding (ASRU).

- IEEE, December, 1997-- .)
Santa Barbara. CA. ‘ i ,
Commercial dictation systems for continuous speech have recently become available.

Although they generally received positive reviews, error correction is still limited to choos-
ing from a list of alternatives, speaking, or typing. We developed a set of interactive
methods to correct errors methods without using either keyboard or mouse, thus allowing
the user to switch among continuous-speech, spelling, handwriting, and pen-gesture
modalities. These correction methods were integrated with our large-vocabulary speech-
recognition system to build a prototype, multimodal, listening typewriter. The efficiency of
different error correction methods was evaluated in a user study. The experiment compares
multimodal correction with other methods available in current speech-recognition applica-
tions. Results confirm the hypothesis that switching among modalities can significantly ex-
pedite corrections. Thus, state-of-the-art speech-recognition technology with multimodal er-
ror correction makes it possible to enter text faster than unkilled typing, including the time
necessary to correct errors. In applications where a keyboard is acceptable, however, typing
still remains the fastest method to correct errors for users with good typing skills.

[Suhm 98]
Suhm, B.
Multimodal Interactive Error Recovery for Non-Conversational Speech User Interfaces.
PhD thesis, Universitat Karlsruhe, July, 1998.
Available via http://werner.ira.uka.de/~bsuhm/thesis/thesis.ps.gz.

This dissertation presents an interactive, multimodal approach for efficient, keyboard-
free, error correction in nonconversational speech-recognition applications that employ
graphic user interfaces. This approach improves efficiency of keyboard-free correction in
two ways: First, by switching input modalities for correction and, second, by correlating
correction input with the context of a repair. By correlating correction input with repair
context, correction accuracies (success rate) of 80-90% are achieved despite the difficulty of
recognizing correction input.

To evaluate empirically the efficiency of multimodal correction in a potentially useful

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

11-6 MULTIMODAL INTERACTION TECHNOLOGY

application, a prototype multimodal text editor was built, integrating interactive multimodal
correction with a state-of-the-art, large-vocabulary continuous speech recognizer. User
studies then compared multimodal methods with conventional keyboard- and mouse-based
correction methods on a dictation task. Results show that without use of a keyboard, text
input rates of more than 40 wpm are feasible, assuming 90% accurate recognition of dic-
tation input in real time. This rate compares favorably to fast, non-secretarial typing. This
research thus confirms the hypothesis that multimodal flexibility can accelerate error cor-
rection in speech recognition applications. Our study shows that user preferences of correc-
tion modality are driven by the level of correction accuracy. It confirms the common as-
sumption that most users would prefer speech for text-input tasks if speech correction were
as accurate as other modalities. Multimodal input is more efficient than keyboard for users
with poor typing skills, for users suffering from Carpal Tunnel Syndrome, and in applica-
tions where keyboard input is slow, such as with small handheld devices.

[Suhm and Waibel 97]
Suhm, B. and A.H. Waibel.
Exploiting repair context in interactive error recovery.
In Proceedings of Eurospeech 97. September, 1997.
Rhodes, Greece. :

In current speech applications, facilities to correct recognition errors are limited to ei-
ther choosing among alternative hypotheses (either by voice or by mouseclick) or respeak-
ing. Information from the context a repair is ignored. We developed a method that improves
the accuracy of correcting speech recognition errors interactively by taking into account the
context of the repair interaction. The basic idea is to use the same language modeling infor-
mation used in the initial decoding of continuous speech input for decoding (isolated word)
repair input. The repair is not limited to speech, but the user can choose to switch modality,
for instance spelling or hand-writing a word. We implemented this idea by rescoring N-best
lists obtained from decoding the repair input using language-model scores for trigrams that
include the corrected word. We evaluated the method on a set of repairs by respeaking,
spelling, and writing, and collected data with our prototype, continuous-speech, dictation
interface. The method can increase the accuracy of repair significantly, compared to recog-
nizing the repair input as independent event.

[Tebelskis 95]
Tebelskis, J.
Speech Recognition using Neural Networks.
PhD thesis, School of Computer Science, Carnegie Mellon University, May, 1995.
Available as technical report CMU-CS-95-142.

This thesis examines how artificial neural networks can benefit a large vocabulary,
speaker independent, continuous speech recognition system. Currently, most speech recog-
nition systems are based on hidden Markov models (HMMs), a statistical framework that
supports both acoustic and temporal modeling. Despite their state-of-the-art performance,
HMMs make a number of suboptimal modeling assumptions that limit their potential effec-
tiveness. Neural networks avoid many of these assumptions, while they can also learn com-
plex functions, generalize effectively, tolerate noise, and support parallelism. While neural
networks can readily be applied to acoustic modeling, it is not yet clear how they can be
used for temporal modeling. Therefore, we explore a class of systems called NN-HMM
hybrids, in which neural networks perform acoustic modeling, and HMMs perform tem-
poral modeling. We argue that a NN-HMM hybrid has several theoretical advantages over
a pure HMM system, including better acoustic modeling accuracy, better context sen-
sitivity, more natural discrimination, and a more economical use of parameters. These ad-

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

MULTIMODAL INTERACTION TECHNOLOGY 11-7

vantages are confirmed experimentally by a NN-HMM hybrid that we developed, based on
context-independent phoneme models, that achieved 90.5% word accuracy on the Resource
Management database, in contrast to only 86.0% accuracy achieved by a pure HMM under
similar conditions.

[Vo 98]
Vo, M.T.
A Framework and Toolkit for the Construction of Multimodal Learning Interfaces.
PhD thesis, School of Computer Science, Carnegie Mellon University, April, 1998.
Available as technical report CMU-CS-98-129 .

Multimodal human-computer interaction, in which the computer accepts input from
multiple channels or modalities. is more flexible, natural, and powerful than unimodal inter-
action with input from a single modality. Many research studies have reported that the com-
bination of human communication means such as speech, gestures, handwriting, eye move-
ment, etc., enjoys strong preference among users. Unfortunately, the development of mul-
timodal applications-is difficult and still suffers from a lack of generality, such that a lot of
duplicated effort is wasted when implementing different applications sharing some common
aspects. The research presented in this dissertation aims to provide a partial solution to the
difficult problem of developing multimodal applications by creating a modular, distributed,
and customizable infrastructure to facilitate the construction of such applications.

This dissertation contributes in three main areas: theory of multimodal interaction,
software architecture and reusable application framework, and rapid application prototyping
by domain-specific instantiation of a common underlying architecture.

The foundation of the application framework and the rapid prototyping tools is a model
of multimodal interpretation based on semantic integration of information streams. This
model supports most of the concéivable human communication modalities in the context of
a broad class of applications, specifically those that support state manipulation via
parameterized actions. The multimodal semantic model is also the basis for a flexible,
domain-independent, incrementally trainable multimodal interpretation algorithm based on
a connectionist network.

The application framework and desngn process have been successfully apphed to the
construction of three multimodal systems in three different domains.

[Waibel et al. 97]
Waibel, A.H, B. Suhm, M.T. Vo, and J. Yang.
Multimodal interfaces for multimedia information agents.
In Proceedings of ICASSP 97. April, 1997.
Munich.

When humans communicate, they take advantage of a rich spectrum of cues. Some are
verbal and acoustic. Some are nonverbal and nonacoustic. Signal processing technology has
devoted much attention to the recognition of speech as a single human communication sig-
nal. Most other complementary communication cues, however, remain unexplored and
unused in human-computer interaction. In this paper we show that the addition of nonacous-
tic or nonverbal cues can significantly enhance robustness, flexibility, naturalness and per-
formance of human-computer interaction. We demonstrate computer agents that use speech,
gesture, handwriting, pointing, spelling jointly for more robust, natural and flexible h}xman-
computer interaction in the various tasks of an information worker: information creation,
access, manipulation or dissemination.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

11-8 MULTIMODAL INTERACTION TECHNOLOGY

[Yang et al. 98]
Yang, J, R. Stiefelhagen, U. Meier, and A.H. Waibel.
Visual tracking for multimodal human computer interaction.
In C. Karat, A. Lund, J. Coutaz, and J. Karat (editors), Proceedings of the CHI '98 Conference
on Human Factors in Computing Systems, pages 140-147. ACM, April, 1998.
Los Angeles.

In this paper we present visual tracking techniques for multimodal human/computer
interaction. First, we discuss techniques for tracking human faces, techniques that use
human skin-color as a major feature. An adaptive stochastic model has been developed to
characterize skin-color distributions. Based on the maximum likelihood method, the model
parameters can be adapted for different people and different lighting conditions. The
feasibility of the model has been demonstrated by the development of a real-time face
tracker. The system has achieved a rate of 30+ frames/second using a low-end workstation
with a framegrabber and a camera. We also present a top-down approach for tracking facial
features such as eyes. nostrils, and lip comers. These realtime visual tracking techniques
have been successfully applied to many applications, such as gaze-tracking and lip-reading.
The face tracker has been combined with a microphone array for extracting a speech signal
from a specific person. The gaze tracker has been combined with a speech recognizer in a
multimodal interface for controlling a panoramic image viewer.

[Yang et al. 00]
Yang, J., X. Zhu, R. Gross, J. Kominek, Y. Pan, and A. Waibel.
Multimodal People ID for a Multimedia Meeting Browser.

In. 2000.
To appear.

A meeting browser is a system that allows users to review a multimedia meeting
record from a variety of indexing methods. Identification of meeting participants is essen-
tial for creating such a multimedia meeting record. Moreover, knowing who is speaking can
enhance the performance of speech recognition and indexing meeting transcription. In this
paper, we present an approach that identifies meeting participants by fusing multimodal in-
puts. We use face ID, speaker ID, color appearance ID, and sound source directional ID to
identify and track meeting. After describing the different modules in detail, we will discuss
a framework for combining the information sources. Integration of the multimodal people
ID into the multimedia meeting browser is in its preliminary stage.

[Yang. Lu, and Waibel 98]

Yang, J., W. Lu, and A.H. Waibel.

Skin-color modeling and adaptation.

In Proceedings of the Asian Conference on Computer Vision (ACCV'98), Vol I, pages
687-694. January, 1998.

Hong Kong.

This paper studies a statistical skin-color model and its adaptation. It is revealed that

(1) human skin colors cluster in a small region in a color space; (2) the variance of a skin
color cluster can be reduced by intensity normalization, and (3) under a certain lighting
condition, a skin-color distribution can be characterized by a multivariate normal distribu-
tion in the normalized color space. We then propose an adaptive model to characterize
human skin-color distributions for tracking human faces under different lighting conditions.
The parameters of the model are adapted based on the maximum likelihood criterion. The
model has been successfully applied to a real-time face tracker and other applications.

FINAL REPORT 1993-1999 SOFTW ARE SCIENCES AND ENGINEERING RESEARCH

RAPIDLY DEPLOY-ABLE SPEECH TRANSLATION 12-1

12. Rapidly Deployable Speech Translation

DIPLOMAT is a pilot project in rapid-deployment, unrestricted speech-to- speech translation. The
system will be retargetable to both new languages and new domains orders of magnitude more
quickly than commercial technology. Unrestricted coverage will be achieved through user-driven
incremental improvement. Initial test languages are Serbo-Croatian, Korean, Haitian-Creole, and
Arabic (all to/from English).

12.1 Towards bi-direction language translation

We have developed a rapidly deployable, bidirectional, wearable, speech-to-speech translation
system. The DIPLOMAT system offers significant speech-to-speech translation capabilities be-
tween English and four other languages: Croatian, Spanish. Haitian Creole, and Korean. Our
efforts have been primarily targeted at rapid deployment of new languages on a wearable plat-
form. for use by peace-keeping forces for such tasks as force protection interviews. DIPLOMAT is
retargetable to both new languages and new domains orders of magnitude faster than commercial
MT technology allows.

We have achieved wide coverage and error-compensation through user-interaction. The system
is intended for use on wearable computers in authentic field conditions. The initial demonstra-
tion involved creating an initial bidirectional Serbo-Croatian/English-speech MT system in
several weeks and improving coverage over several months. DIPLOMAT combines and extends
previous DARPA- and DoD-funded research at Carnegie Mellon University in machine trans-
lation, continuous-speech recognition, speech synthesis, and wearable computers.

This bidirectional MT system is significantly more challenging than the paraliel *‘one-way”’
DARPA-funded effort, having as its objective the ability to translate general responses from naive,
untrained foreign-language speakers. This is very challenging from both MT and user-interface
points of view. For MT, the less restricted the topics of discussion, the more difficult the trans-
lation problem. For user interfaces, we must be able to interact effectively with someone who
may never have seen a computer before. DoD reaction to our initial demonstration made clear
the need to focus additional effort on developing simple yet powerful graphical user interfaces
(GUISs). to allow naive foreign-language speakers to interactively correct speech recognition and
translation errors with no training.

Concurrently with producing demonstration systems in these languages, we also carried out
research into improving the underlying technology for rapid-deployment MT, in particular rapid-
deployment morphological analysis (RDMA) and generalized Example-Based MT (EBMT).
RDMA is currently the development-time bottleneck for translating new languages. One can
finesse RDMA for languages such as Serbo-Croatian and Haitian Creole, but it will be absolutely
crucial for a usable Arabic system. EBMT uses corresponding pairs of sentences in the two
languages as examples for translating new sentences that contain sub-phrases of the example
sentences. EBMT is a primary contributor to the rapid-deployment MT capabilities of
DIPLOMAT.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

12:2 RAPIDLY DEPLOYABLE SPEECH TRANSLATION

12.2 Applying DIPLOMAT: Building a translating telephone

As a three-month extension to the DIPLOMAT project, we proposed to produce a Translating
Telephone, allowing any two individuals with telephones and web browsers to communicate
across a language barrier, with no advance installation required. We proposed to initially devel-
op this system for bidirectional Korean/English speech-to-speech translation, with a potential ap-
plication facilitating cooperation between US and South Korean forces.

The primary purpose of the web browser is not long-distance communication across the Web
(although that is an important side-benefit), but rather that two people even in the same room can
bring up the Translating Telephone without any special hardware or advance software instal-
lation. The proposed system would be designed using ‘‘plug-ins’’ to a standard web browser
such as Netscape, plus an audio connection that could be provided by an ordinary voice
telephone.

Thus, in the case of Korea, if there is trouble communicating between cooperating forces, they
can start up the translator just by bringing up Netscape and downloading our plug-in, wherever
they are. They do not need to have previously installed it or have any special hardware. It will
be immediately available to all our forces, anywhere that they have a Web connection anda
telephone. ‘

12.3 Implementing the translating telephone

We wrote the user interface of the translating telephone in Java, and interfaced to a Central Serv-
er, which coordinated communications between components. This architecture was required due
to the security constraints that Java enforces. The architecture of the system is described in
(Hogan and Frederking, 2000). :

In addition, we produced an optional Editor client to allow a human language expert to be
present during initial development phase of a new language, while the system is still learning.

We implemented a web interface to allow selection of language pair, and send email to the other
interlocutor advising him/her how to use the system.

We demonstrated the system using only close-talking microphones. No demonstration was
given using a telephone as speech input device.

We demonstrated full speech-to-speech capabilities in Spanish/English in April 1999. Following
the demonstration, we improved the ergonomics of the interface according to suggestions of at-
tendees. No demonstration of the complete system was given for Korean/English, although all
components of the system have been shown to work for that language pair.

12.4 Accomplishments in language translation

¢ Developed a much improved Korean/English version of the text-text and speech-
speech translator, demonstrating rapid deployment for an Asian language. This
wearable system is suitable for initial field testing by Service personnel in realistic
scenarios, such as:

* Korean speech data collection

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

RAPIDLY DEPLOYABLE SPEECH TRANSLATION

« Korean speech synthesis (SS)
« Adaptation of MT system to Korean (16-bit char)
» GUI adaptation for Korean characters

e Collected a major database of Korean speech data. As far as we know, this is the
largest existing Korean speech database: 4769 Mbyte, 274 speakers.

« Developed a Haitian-Creole/English version of the speech translator, demonstrating
rapid deployment for a different language type

e Collected a major database of Haitian-Creole speech data: 2979 Mbyte, 149
speakers

~ e Developed a Spanish/English version of the speech translator, assembled from avail-
able components (except for speech synthesis) in order to allow interesting non-DoD
demonstrations. '

« Developed techniques for translating between languages with highly-divergent syn-
tax (Korean and English, for example). Tagging and bracketing techniques allow
our rapid-deployment approach to produce reasonably good translations, even where
surface word-order differs significantly.

e Developed the TEXT-R newswire text-selection program to reduce redundancy in and
improve the quality of our parallel corpus-development effort

e Demonstrated expérimentally using our Croatian/English system that our MEMT)
translation architecture is effective :

« Integrated the Haitian-Creole/English translation component into the Army
Research Lab’s FALCON system for field prioritization of written material in Haiti.
Produced an OCR-error corrector for FALCON, similar in concept to a spelling cor-
rector but incorporating knowledge of OCR errors and a statistical language model.

e Ported the Serbo-Croatian system from Windows laptops to the SMART Module of
the Carnegie Mellon/DARPA Language Translator.

12.5 Related accomplishments

e Architecture evaluation: The first-ever evaluation of the Multi-Engine Machine
Translation (MEMT) architecture was published as (Hogan & Frederking, 1998).
This evaluation demonstrates that using many translation engines and combining
them is indeed better than any single engine.

e Further MT improvements: Improvements to the Example-Based MT system are
described in (Brown, 1999). One of the key results is a substantial reduction in the
amount of bilingual text needed to produce the same level of coverage.

e ARL Collaboration: Our on-going work with the Army Research Lab resulted in the
deployment of our Haitian Creole translation system as part of the FALCon (For-
ward Area Language Converter). This collaboration led to work on Optical Charac-
ter Recognition for Haitian Creole cf. (Hogan, 1998) and (Hogan, 1999).

e Haitian Creole Orthography: As part of an effort to standardize the written forms in
our language database for Haitian Creole, we investigated the phonetics behind a
particularly common alternation (Hogan & Allen, 1999).

e System Description: A complete description of the DIPLOMAT system, its goals

I SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

12-4 ' RAPIDLY DEPLOYABLE SPEECH TRANSLATION

and methodology is being published as part of a special issue of the journal Machine
Translation on Speech Translation Technology, .

12.6 Technology transition

In November 1998, we began investigations into possible joint work in English/French Speech-
to-Speech Machine Translation with The University of Nancy in France, with the help of Raj
Reddy and Jean-Paul Haton. The original DIPLOMAT software was ported to Nancy. and a the

- software was adapted to permit networked communication using two computers (the DIPLOMAT
system was designed to run on one computer).

We are currently involved in a DIPLOMAT spin-off, the Audio Voice Translation Guide System
(TONGUES). TONGUES is being investigated under contract to Lockheed-Martin (Oswego, NY),
and is funded by the U.S. Army ACT II Program. The project has a December 2000 deadline to
produce a prototype field version of the wearable DIPLOMAT system for use by the Army
Chaplaincy and other units.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

RAPIDLY DEPLOYABLE SPEECH TRANSLATION 12-5

12.7 Bibliography

[Allen 98]
Allen, J.
Lexical variation in Haitian Creole and orthographic issues for MT and OCR applications.
In Proceedings of the Workshop on Embedded MT Systems. Association for Machine Trans-
lation in the Americas. October, 1998.
Langhorne, PA. Held in conjunction with AMTA’98.

[Allen and Hogan 98a]
Allen, J., and C. Hogan.
Evaluating Haitian Creole orthographies from a non-literacy-based perspective.
In Proceedings of the Annual Meeting of the Society for Pidgin and Creole Linguistics & Lin-
guistics Societv of America. January, 1998.
New York City.

[Allen and Hogan 98b]
Allen. J., and C. Hogan.
Expanding lexical coverage of parallel corpora for the Example-Based Machine Translation
approach.
In Proceedings of the First International Conference on Language Resources and Evaluation,
pages 747-754. May, 1998.
Granada, Spain. Vol. 2. -

In this paper we discuss a method called TEXTR that improves lexical coverage in
creating parallel corpora that are to be subsequently implemented in an Example-Based
Machine Translation (EBMT) system. First, we explain the purpose and importance of the
EBMT approach. Second, we indicate how low-density languages can benefit from rapid
corpora development using our method as compared to other corpora-expansion techniques.
Third, an evaluation of these various methods, based on tests for current lexical coverage,
projected lexical coverage, and word-frequency distribution, clearly indicates that TEXTR is
a valid mechanism for EBMT corpus development. We conclude that this method will im-
prove the quality and speed with which parallel corpora are created, both for our specific
purposes and possibly for other corpus-based applications.

[Brown 96]
Brown, R.D.
Example-Based Machine Translation in the Pangloss System.
In Proceedings of the 16th International Conference on Computational Linguistics
(COLING-96). August, 1996. :
Copenhagen, Denmark.

The Pangloss Example-Based Machine Translation engine (PanEBMT) is a translation
system requiring essentially no knowledge of the structure of a language, merely a large,
parallel corpus of example sentences and a bilingual dictionary. Input texts are segmented
into sequences of words occurring in the corpus, for which translations are determined by
subsentential alignment of the sentence pairs containing those sequences. These partial
translations are then combined with the results of other translation engines to form the final
translation produced by the Pangloss system. In an internal evaluation, PanEBMT achieved
70.2% coverage of unrestricted Spanish news-wire text. despite a simplistic, subsentential
alignment algorithm, a suboptimal dictionary, and a corpus from a different domain than the
evaluation texts. :

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

126 RAPIDLY DEPLOYABLE SPEECH TRANSLATION

[Brown 98]
Brown, R.D.
Improving Embedded MT with User Interaction.
In Proceedings of the Workshop on Embedded MT Systems. Association for Machine Trans-
lation in the Americas. October, 1998.
Langhomne, PA. Held in conjunction with AMTA"93.

Automated machine translation (MT) of unrestricted texts is known to be error-prone,
and thus typically requires human involvement in the translation process to achieve accept-
able quality. In a conventional system performing interactive speech translation between
two speakers, neither pre-editing nor conventional post-editing is possible, and the users
will generally have no direct access to the embedded MT component. Since most trans-
lation errors are the result of incorrect selections, one approach to solving the dilemma is to
provide the user with access to various alternative translations and allow him to select the
one which appears to be correct in context. If the system remembers the manual selection,
it can make the correct selections automaticall y whenever the same context is encountered
thereafter. ‘

[Brown 99]
. Brown, R.
Adding Linguistic Knowledge to a Lexical Example-Based Translation System.
In Proceedings of the Eighth International Conference on Theoretical and Methodological Is-
sues in Machine Translation (TMI-99), pages 22-32. August, 1999.)
Chester, England. - :

Example-Based Machine Translation (EBMT) using partial exact matching against a
database of translation examples has proven quite successful, but requires a large amount of
pre-translated text in order to achieve broad coverage of unrestricted text. By adding lin-
guistically tagged entries to the example base and permitting recursive matches that replace
the matched text with the associated tag, substantial reductions in the required amount of
pre-translated text can be achieved. A modest investment of time -- on the order of two
person-weeks -- adding linguistic knowledge reduces the required example text by a factor
of six or more, while retaining comparable translation quality. This reduction makes EBMT
more attractive for so-called *‘low-density"’ languages for which little data is available.

[Brown and Frederking 95]

Brown. R.D. and R.E. Frederking.

Applying Statistical English Language Modelling to Symbolic Machine Translation.

In Proceedings of the Sixth International Conference on Theoretical and Methodological Is-
sues in Machine Translation (TMI'95), pages 221-239. July, 1995.

Leuven, Belgium.

The Pangloss Mark III system was, from the outset, designed to be a symbolic, human-

aided machine-translation (MT) system. The need arose to rapidly adapt it for use as a
fully-automated MT system. Our solution to this problem was to add a statistical English
language model (ELM) to replace the most significant user activity, selecting between alter-
nate translations produced by the system. The language model used is a trigram model with
backoff to bigram and unigram probabilities. The language modeling and search procedure
are described in detail, and comparison is made to other trigram-based statistical MT work.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

RAPIDLY DEPLOYABLE SPEECH TRANSLATION

[Eskenazietal. 97]
Eskenazi, M., C. Hogan, J. Allen, and R.E. Frederking.
Issues in database creation: recording new populations, faster and better labelling.
In Proceedings of Eurospeech 97, pages 1699-1703. September, 1997.
Rhodes, Greece. Vol. 4, poster session.

[Eskenazi et al. 98]
Eskenazi, M., C. Hogan, J. Allen, and R.E. Frederking.
Issues in database design: recording and processing speech from new populations.
In Proceedings of the First International Conference on Language Resources and Evaluation,
pages 1289-1293. May, 1998.
Granada, Spain. Vol. 2, poster session.

[Frederking et al. 99]

Frederking, R., Hogan, C., and Rudnicky. A.

A New Approach to the Translating Telephone.

In Proceedings of the Machine Translation Summit VII: MT in the Great Translation Era.

- September, 1999. '

Singapore. _
The Translating Telephone has been a major goal of speech translation for many years.
Previous approaches have attempted to work from limited-domain, fully-automatic trans-
lation towards broad-coverage, fully-automatic translation. We are approaching the
problem from a different direction: starting with a broad-coverage but not fully-automatic
system, and working towards full automation. We believe that working in this direction
will provide us with better feedback, by observing users and collecting language data under
realistic conditions, and thus may allow more rapid progress towards the same ultimate
goal. Our initial approach relies on the wide-spread availability of Internet connections and
web browsers to provide a user interface. We describe our initial work, which is an exten-
sion of the DIPLOMAT wearable speech translator project.

[Frederking et al. 00a]
Frederking, R., Rudnicky, A., Hogan, C., and Lenzo, K.
Interactive Speech Translation in the DIPLOMAT Project. Machine Translation.
In Machine Translation on Speech Translation Technology. 2000.
To appear.

The DIPLOMAT rapid-deployment speech translation system is intended to allow naive
users to communicate across a language barrier, without strong domain restrictions, despite
the error-prone nature of current speech and translation technologies. In addition, it should
be deployable for new languages an order of magnitude more quickly than traditional tech-
nologies. Achieving this ambitious set of goals depends in large part on allowing the users
to interactively correct recognition and translation errors. We briefly present the Multi-
Engine Machine Translation (MEMT) architecture, describing how it is well-suited for such
an application. We then discuss our approaches to rapid-deployment speech recognition
and synthesis. Finally we describe our incorporation of interactive error correction through-
out the system design. We have already developed working bidirectional Croatian <->
English and Spanish <-> English systems, and have Haitian Creole <-> English and Korean
<-> English versions under development.

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

12-8 ' RAPIDLY DEPLOYABLE SPEECH TRANSLATION

[Frederking et al. 00b)
Hogan, C. and Frederking, R.
WebDIPLOMAT: A Web-Based Interactive Machine Translation System.
In Proceedings of the 18th International Conference on Computational Linguistics (COLING
'2000). August, 2000.
Saarbruecken, To appear.

We describe an interactive, web-based, chat-style machine translation system, support-
ing speech recognition and synthesis, local- or third-party correction of speech recognition
and machine translation output and online learning. The underlying client-server architec-
ture, implemented in Java, provides remote, distributed computation for the translation and
speech subsystems. We further describe web-based user interfaces which are easily
redesigned to produce a number of useful configurations.

[Frederking, Rudnicky, and Hogan 97]

Frederking, R.E., A.L Rudnicky, and C. Hogan.

Interactive Speech Translation in the DIPLOMAT Project.

In Proceedings of the Spoken Language Translation Workshop at (ACL 97), pages 61-66. As-
sociation for Computational Linguistics, May, 1997,

Madrid, Spain. An extended version has been submitted to the Machine Translation Journal.

The DIPLOMAT rapid-deplovment speech translation system is intended to allow naive

users to communicate across a language barrier, without strong domain restrictions, despite
the error-prone nature of current speech and translation technologies. Achieving this am-
bitious goal depends in large part on allowing the users to correct recognition and trans-
lation errors interactively. We briefly present the Multi-Engine Machine Translation
(MEMT) architecture, describing how it is well-suited for such an application. We then
describe our incorporation of interactive error correction throughout the system design. We
have already developed a working bidirectional Serbo-Croatian/English system, and are
currently developing Haitian-Creole/English and Korean/English versions.

[Hogan 98]
Hogan, C.
Correcting OCRed Text for Machine Translation.
In Proceedings of the Workshop on Embedded MT Systems. Association for Machine Trans-
lation in the Americas, October, 1998.
Langhome, PA. Held in conjunction with AMTA"98.

While commercial Optical Character Recognition (OCR) systems are quite good. they
often fail to incorporate any language-specific error correction component. In this paper we
describe an OCR post-processor that incorporates language-specific knowledge using a
Statistical Language Modeller (SLM). Because the post-processor is outside of the OCR A
software, the language it recognizes may be easily changed, enabling generic OCR software
to be reliably used for many languages. We specifically address the problem of developing
OCR for economically less viable languages, such as Haitian Creole.

[Hogan 99]

Hogan, C.

OCR for Minority Languages.

In Proceedings of the 1999 Symposium on Document Image Understanding Technology
(SDIUT *99), pages 235-244. April, 1999. '

Annapolis, MD.

In this paper I discuss the difficulties encountered when applying Optical Character

Recognition (OCR) to minority languages. In particular, I explore the case of developing

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

RAPIDLY DEPLOYABLE SPEECH TRANSLATION ‘ 12-9

OCR for Haitian Creole (HC), a vernacular, minority language. Although HC is written
with a variant of the Roman alphabet, no OCR device has ever been developed specifically
with HC in mind, with the result that recognition can be fairly poor. Ipresenta technique
for post-processing OCR output that is independent of the OCR device being used, and
demonstrate that it can improve OCR recognition for HC.

[Hogan and Allen 99}
Hogan, C. and Allen. J.
Phonemic and Orthographic Realizations of ’r’ and *w’ in Haitian Creole.
In Proceedings of the 14th International Congress of Phonetic Sciences (ICPHS '99). August,
1999.
San Francisco, CA.

This paper presents a synchronic perspective on the phonemic status of the or-
thographic forms ’r’ and *w’ that appear in Haitian Creole (HC) texts. Other HC language
researchers have postulated two phonemes (i.e., /t/ and /w/) conditioned by
roundness/labialization. Such evidence is contradicted by written corpora. Our analyses take
into account the variation in HC found in written and spoken corpora. From this work, we
aim to determine the status and distribution of the related phonemes and phonetic realiza-
tions in HC. Our findings have considerable bearing on speech recognition and speech syn-
thesis systems that are currently under development for HC and other languages.

[Hogan and Frederking 98] .)

Hogan, C. and R.E. Frederking. ' _

An Evaluation of the Multi-Engine MT Architecture. _

In L. Gerber and D. Farwell (editors). Machine Translation and the Information Soup:
Proceedings of the Third Conference of the Association for Machine Translation in the
Americas (AMTA98). October, 1998. ,

Langhome, PA. Lecture Notes in Computer Science. (Berlin) Springer-Verlag.

The Multi-Engine MT (MEMT) architecture combines the outputs of multiple MT en-
gines using a statistical language model of the target language. It has been used success-
fully in a number of MT research systems, for both text and speech translation. Despite its
perceived benefits, there has never been a rigorous. published, double-blind evaluation of
the claim that the combined output of a MEMT system is in fact better than that of any one of
the component MT engines. We report here the results of such an evaluation. The com-
bined MEMT output is shown to indeed be better overall than the output of the component
engines in a Croatian/English MT system. This result is consistent in both translation direc-
tions, and between different raters.

[Lenzo, Hogan, and Allen 98]
Lenzo, K., C. Hogan, and J. Allen.
Rapid-Deployment Text-to-Speech in the DIPLOMAT System.
In Proceedings of the 5* International Conference on Spoken Language Processing (ICSLP98).
November, 1998.
Sydney, Australia. Presented in poster session.

The DIPLOMAT project at Carnegie Mellon University instantiates a program of rapid-
deployment speech-to-speech machine translation. We have developed techniques for
quickly producing text-to-speech (TTS) systems for new target languages to support this
work. While the resulting systems are not immediately of comparable quality to commer-
cial systems on unrestricted tasks in well-developed languages. they are more than adequate
for limited-domain scenarios and rapid prototyping — they generalize to unseen data with
some degradation, while quality in-domain can be quite good. Voices and engines for syn-

SOFTWARE SCIENCES AND ENGINEERING RESEARCH FINAL REPORT 1993-1999

RAPIDLY DEPLOYABLE SPEECH TRANSLATION

thesizing new target languages may be developed in a period as short as two weeks after

text corpus collection. We have successfully used these techniques to build a TTS module
for English, Croatian, Spanish, Haitian Creole and Korean.

FINAL REPORT 1993-1999 SOFTWARE SCIENCES AND ENGINEERING RESEARCH

